初中数学优秀教案

时间:2025-04-05

初中数学教案(通用15篇)

初中数学教案 篇1

  教学目标

  (一)知识认知要求

  1、回顾收集数据的方式、

  2、回顾收集数据时,如何保证样本的代表性、

  3、回顾频率、频数的概念及计算方法、

  4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

  5、能利用计算器或计算机求一组数据的算术平均数、

  (二)能力训练要求

  1、熟练掌握本章的知识网络结构、

  2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

  3、经历调查、统计等活动,在活动中发 展学生解决问题的能力、

  (三)情感与价值观要求

  1、通过对本章内容的回顾与思考,发展学 生用数学的意识、

  2、在活动中培养学生团队精神、

  教学重点

  1、建立本章的知识框架图、

  2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用、

  教学难点

  收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

  教学过程

  一、导入新课

  本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

  例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

  先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

  同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

查看全文

初中数学教案(精选15篇)

初中数学教案 篇1

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

查看全文

关于初中数学教案(精选13篇)

关于初中数学教案 篇1

  教学目标:

  1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。

  2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。

  3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。

  4、培养学生大胆猜想、合理论证的科学精神。

  教学重点:

  探索并运用三角形中位线的性质。

  教学难点:

  运用转化思想解决有关问题。

  教学方法:

  创设情境——建立数学模型——应用——拓展提高

  教学过程:

  情境创设:测量不可达两点距离。

  探索活动:

  活动一:剪纸拼图。

  操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。

  观察、猜想: 四边形BCFD是什么四边形。

  探索: 如何说明四边形BCFD是平行四边形?

  活动二:探索三角形中位线的性质。

  应用

  练习及解决情境问题。

  例题教学

  操作——猜想——验证

  拓展:数学实验室

  小结:布置作业。

关于初中数学教案 篇2

  1.知识结构

  2.重点和难点分析

  重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

查看全文

初中数学教案最新(精选14篇)

初中数学教案最新 篇1

  一、教学目标

  (一)知识与技能

  了解数轴的.概念,能用数轴上的点准确地表示有理数。

  (二)过程与方法

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  (三)情感、态度与价值观

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  (一)教学重点

  数轴的三要素,用数轴上的点表示有理数。

  (二)教学难点

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

查看全文

初中数学教案汇编(通用4篇)

初中数学教案汇编 篇1

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

  等都不是代数式.

  3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

查看全文

初中数学轴对称教案(精选3篇)

初中数学轴对称教案 篇1

  教学目标:

  1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的.一些基本特征。

  2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

  教学重点:

  使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  教学难点:

  引导学生自己发现和认识轴对称图形的一些基本特征。

  教学准备:

  多媒体课件一套,每小组有不同的图形一套,小剪刀等。

  教学过程:

  一、创设情境,引入新课

  情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”

  1、请你猜一猜,他们分别是什么?

  2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)

  小结:像这些昆虫的两边是一模一样,我们就说它是对称的。

  【设计意图:从学生熟悉的事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】

  师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。

查看全文
目录