实践体验“运用逻辑运算‘与’,指定检索条件进行检索”
活动目的:
(1)掌握搜索引擎的基本使用方法。
(2)掌握按指定检索条件进行检索的方法。
(3)了解使用搜索引擎进行信息检索时在检索词中使用的各种逻辑运算符。
活动步骤:
(1)通过操作方法示意图了解保存网页内容的一般过程。可以对示意图进行一些解释。首先,用浏览器访问搜索引擎网站的网页,如“”。在关键词文本框中,输入检索关键词。在关键词中包含逻辑运算符“与”。其次,考察搜索引擎返回的搜索结果,如果符合检索条件的记录很多,说明检索条件过宽,可以适当缩小范围,如果记录很少,则可以适当放宽检索范围。然后,重新进行搜索,直至找到需要的信息。
(2)要求每位学生自己确定一个需要查找资料的主题。并记录搜索的结果。
活动评价:
在实践体验活动的常规评价指标中,本次活动的评价项目“独立思考”是较为重要的,下面重点讨论一下该指标的评价标准。
“独立思考”中的“思考深入”是指:能够真正理解检索关键词的用法,能够独立地设计最合适的关键词;“思考积极”是指:经过努力能够较好地设计出有效的关键词并检索到有用的信息;“能够思考”是指:经过别人的帮助能够自己设计出有效的关键词。
由于在使用搜索引擎的操作技能中,正确、科学地设定和使用关键词是一项核心技能,所以除了实践体验活动的常规评价指标外,我们还要对关键词的运用能力进行评价。
项目
二 简 易 逻 辑
二 简 易 逻 辑 逻辑联结词[教学目的]⒈了解含有“或”、“且”、“非”的复合命题的构成,会判断复合命题的真假;⒉理解逻辑联结词“或”、“且”、“非”的含义.[重点难点]重点:判断复合命题真假的方法; 难点:对“或”的含义的理解.[教学设想] 1.教法 2.学法 3.课时[教学过程]逻辑联结词与复合命题[教学目的]理解逻辑联结词“或”、“且”、“非”的含义;了解含有“或”、“且”、“非”的复合命题的构成.[教学过程]一、复习引入 ⒈什么叫命题?先看下列语句:① 12>5;② 3是12的约数;③ 0.5是整数.我们知道,①、②是真的,③是假的.再看下列语句:④ 这是一棵大树;⑤ 3是12的约数吗?⑥ x>5.对于④,由于“大树”没有界定,就不能判断其真假;对于⑤,它不涉及真假;对于⑥,由于x是未知数,也不能判断它是否成立(即真假).一般地,可以判断真假的语句就叫做命题;语句是真的,就叫真命题,语句是假的,就叫假命题.例如,语句①、②、③都是命题,其中①、②是真命题,③是假命题.不能判断真假(或不涉及真假)的语句不是命题.例如,语句④、⑤、⑥都不是命题.说明:⑴初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.说法不同,实质是一样的.⑵注意不是所有的语句都是命题,语句是不是命题,关键在于能不能判断其真假,即能不能判断其是否成立.不能判断真假的语句,就不是命题.⑶与命题相关的概念是开语句.例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).⒉ 上述①、②、③三个命题都比较简单,由简单的命题可以组合成新的比较复杂的命题,下面我们就来学习这种较复杂命题的构成形式.二、学习、讲解新课 ⒈ “或”、“且”、“非”的含义看下面的例子:⑦ 10可以被2或5整除;⑧ 菱形的对角线互相垂直且平分;⑨ 0.5非整数 .这里的“或”我们已经学过,像不等式x2-x-6>0的解集是{x|x<-2,或x>3};“且”我们也学过,像不等式x2-x-6 <0的解集是{x|-2<x<3},即{x|x>-2,且x<3};“非”是否定的意思,“0.5非整数”是对命题“0.5是整数”进行否定而得出的新命题.“或”、“且”、“非”这些词就叫做逻辑联结词.⒉ 简单命题与复合命题像上述①、②、③这样的命题,是不含逻辑联结词的命题,称为简单命题;像上述⑦、⑧、⑨这样的命题,它们是由简单命题与逻辑联结词构成的命题,称为复合命题.⒊ 复合命题的构成形式我们常用小写的拉丁字母p,q,r,s,…来表示命题,由上述复合命题⑦、⑧、⑨可知,复合命题的构成形式分别是:p或q; p且q;非p.非p也叫做命题p的否定.“p或q”是指p,q中的任何一个或两者.例如,“x a或x b”,是指x可能属于a但不属于b(这里的“但”等价于“且”),x也可能不属于a但属于b,x还可能既属于a又属于b(即x a∩b);又如在“p真或q真”中,可能只有p真,也可能只有q真,还可能p,q都为真.“p且q”是指p,q中的两者.例如,“x a且x b”,是指x属于a,同时x也属于b(即x a∩b).“非p”是指p的否定,即不是p.例如,p是“x a”,则“非p”表示x不是集合a的元素(即x cua).例分别指出下列复合命题的形式及构成它们的简单命题:⑴ 24既是8的倍数,也是6的被数;⑵ 李强是篮球运动员或跳高运动员;⑶ 平行线不相交.解:⑴ 这个命题是p且q的形式,其中p:24是8的倍数,q:24是6的倍数.⑵ 这个命题是p或q的形式,其中p:李强是篮球运动员,q:李强是跳高运动员.⑶ 这个命题是非p的形式,其中p:平行线相交.练习:课本答案:⒈ ⑴ p或q:5是15或20的约数;p且q:5是15的约数且是20的约数;非p:5不是15的约数.⑵ p或q:矩形的对角线相等或互相平分;p且q:矩形的对角线相等且互相平分;非p:矩形的对角线不相等.⒉ ⑴ p且q;⑵ p或q;⑶ 非p;⑷ p或q.三、小 结本节在复习命题概念的基础上,主要学习了逻辑联结词“或”、“且”、“非”的含义,以及由简单命题和上述三个逻辑联结词构成的复合命题的形式.四、布置作业(一)复习:复习课本内容,巩固有关概念.(二)书面:课本答案:1.⑵p或q:方程x2+x-1=0的两根符号或绝对值不同;p且q:方程x2+x-1=0的两根符号不同且绝对值不同;非p:方程x2+x-1=0的两根符号相同.⑷p或q:三角形两边之和大于第三边或两边之差小于第三边;p且q:三角形两边之和大于第三边且两边之差小于第三边;非p:三角形两边之和不大于第三边.2.⑴这个命题是p且q的形式,其中p:12是48的约数,q:12是36的约数.⑵这个命题是非p的形式,其中p:方程x2+1=0有实根.⑶这个命题是p或q的形式,其中p:10是5的倍数,q:15是5的倍数.⑷这个命题是p且q的形式,其中p:有两个角为450的三角形是等腰三角形,q:有两个角为450的三角形是直角三角形.(三)思考题:试举出日常生活中与“或”、“且”有关的例子.(四)预习:课本p27-28内容:怎样判断复合命题的真假?
第一章 集合与简易逻辑(精选6篇)
第一章 集合与简易逻辑 篇1
第一章 集合与简易逻辑第一教时 教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。过程: 一、引言:(实例)用到过的“正数的集合”、“负数的集合” 如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。如:自然数的集合 0,1,2,3,……如:高一(5)全体同学组成的集合。结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。指出:“集合”如点、直线、平面一样是不定义概念。二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:a={我校的篮球队员} ,b={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集) 记作:n2.正整数集 n*或 n+3.整数集 z4.有理数集 q5.实数集 r集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性(例子 略)三、关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a 记作 aîa ,相反,a不属于集a 记作 aïa (或aîa)例: 见p4—5中例四、练习 p5 略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。① 语言描述法:例{不是直角三角形的三角形}再见p6例② 数学式子描述法:例 不等式x-3>2的解集是{xîr| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见p6例六、集合的分类 1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合 例题略3.空集 不含任何元素的集合 f七、用图形表示集合 p6略八、练习 p6小结:概念、符号、分类、表示法九、作业 p7习题1.1
1.6.1逻辑联结词(通用8篇)
1.6.1逻辑联结词 篇1
课 题:1.6 逻辑联结词(2)
教学目的:
1.加深对“或”“且”“非”的含义的理解;
2.能利用真值表,判断含有复合命题的真假;
3.培养抽象逻辑思维能力,培养归纳推理的思维能力
教学重点:判断复合命题真假的方法
教学难点:对“p或q”复合命题真假判断的方法
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
这一节的重点是逻辑联结词“或”、“且”、“非”.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.
这一节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.
教学过程:
一、复习引入:
1.什么叫做命题?(可以判断真假的语句叫命题 正确的叫真命题,错误的叫假命题 )
2.逻辑联结词是什么?(“或”的符号是“∨”、“且”的符号是“∧”、“非”的符号是“┑”,这些词叫做逻辑联结词)
含义是?“p或q”是指p,q中的任何一个或两者.例如,“x a或x b”,是指x可能属于a但不属于b(这里的“但”等价于“且”),x也可能不属于a但属于b,x还可能既属于a又属于b(即x ab);又如在“p真或q真”中,可能只有p真,也可能只有q真,还可能p,q都为真.
集合与简易逻辑(精选11篇)
集合与简易逻辑 篇1
第二教时教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。过程:一、 复习:(结合提问)1.集合的概念 含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、 例一 用适当的方法表示下列集合:1.平方后仍等于原数的数集 解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-6<0的整数解集解:{xÎZ| x2-x-6<0}={xÎZ| -2<x<3}={-1,0,1,2}4.过原点的直线的集合 解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集 解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)}6.使函数y=有意义的实数x的集合 解:{x|x2+x-6¹0}={x|x¹2且x¹3,xÎR}三、 处理苏大《教学与测试》第一课 含思考题、备用题四、 处理《课课练》五、 作业 《教学与测试》 第一课 练习题
集合与简易逻辑 篇21、设全集为 ,则有: , 。
2、 , 。
3、 , ,则有如下关系:
(1)若 时,则 是 的充分条件;
集合与简易逻辑教案
1、设全集为 ,则有: , 。
2、 , 。
3、 , ,则有如下关系:
(1)若 时,则 是 的充分条件;
(2)若 时,则 是 的充分不必要条件;
(3)若 时,则 是 的充要条件。
4、由n个元素所组成的集合,其子集有 个,即 ,真子集 个,非空的真子集 个。
5、如果原命题是"若p则 ",则原命题的否定是"若p则非 ",而原命题的否命题是"若非p则非 ",但对于全称命题其否定则应加以区别。
例如:命题"对任意的 , "的否定为:"存在 , "
6、使用反证法的重要一环是如何正确提出与原结论相反的假定,常见的有:
7、一般地,已知函数 ,定义域和值域有如下性质:
(1)若 的定义域为a,且 在集合b上有意义,则 。
(2)若 的值域为a,且 的取值范围为b,则 。
(3)若 的单调增(减)区间为a,且 在区间b上单调递增(减),则 。
8、描述法给出的集合,解题中应注意代表元素的属性。有关集合问题的讨论不能遗漏了空集。空集是任何集合的子集,是任何非空集合的真子集。有关集合问题的讨论应注意集合语言转化的等价性。
9、充要条件的判定:
(1)先分清哪是条件,哪是结论,将条件放在左边,结论放在右边;
(2)从条件推到结论,说明条件是充分的;从结论推到条件,说明条件是必要的。
10、"非 "形式复合命题的真假与 的真假相反;" 且 "形式复合命题,当 与 同为真时为真,其它情况时为假;" 或 "形式复合命题,当 与 同为假时为假,其它情况时为真。