《小数的性质》教案

2024-02-17

《小数的性质》教案 篇1

  教学目标:

  1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。

  2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

  3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。

  教学重点:

  理解小数的性质,并能应用性质解决实际问题。

  教学难点:

  感悟小数性质中不变与变化的数学辩证思想,发展学生思维。

  教学流程:

  一、情景导入。

  创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。

  二、自主探究。

  1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.

  2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?

  3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。

  4.深入研究小数的性质:

  (1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。

  (2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。

  (3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?

  5.添上两笔,让4.40、400三个数相等。

  6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的'理解“小数的末尾”这一关键词眼。

  三、练习应用。

  1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?

  总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?

  2.把下面物品的价格写成用“元”作单位的两位小数。

  总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。

  3.初步感知小数改写的作用。

  四、课堂总结。

  通过这节课的学习,你有了哪些新的收获?

《小数的性质》教案 篇2

  教学内容:小数的性质

  教学目标: 1.知道小数的末尾添上“0”或者去掉“0”,小数的大小不变,理解其中的算理。

  2.会运用小数的性质进行小数的化简与改写。

  教学重点:掌握小数的性质。

  教学难点:理解“小数的末尾添上‘0’或者去掉‘0’,小数大小不变”的道理。

  教学设计

  (一)导入阶段

  1.做“找朋友”游戏(把相等的两个数找出来)。如:7/10、0.307、0.21、307/1000、21/100、0.7等。

  在回答的同时,可以让学生讲述上题中小数的计数单位和有几个这样的计数单位。

  2.结合实例引入。

  如:说说下面各数表示几元几角几分?

  0.6元  0.60元  2.3元  2.30元  4.00元  4 元

  回答后,让学生想想可以发现什么。

  比较0.1米、0.10米、0.100米的大小。

  教师可以启发学生讲述比较几个具体数量之间大小的过程,也可以让学生讨论后讲述比较的过程。

  (二)探究阶段

  出示例1,提出问题,学生讨论,得出等式。

  问题:怎样比较例题中三个小数之间的大小?

  讨论:结合直观图,讨论得出解决问题的方法:把三个小数分别改写成分数来比较。

  等式:因为4/10、40/100、400/1000分数大小相等,所以0.4=0.40=0.400。

  引导观察,找出规律,看书对照,学习性质。

  观察:“从左往右”看或“从右往左”看,小数的末尾发生了什么变化?

  规律:小数的末尾添上“0”,小数的大小不变。小数的末尾去掉“0”,小数的大小不变。

  看书:看书后得知,找出的规律就是新学的知识:小数的性质。(揭示课题)

  (三)运用阶段

  1.课本“练一练”第1题。

  2.课本“练一练”第2题。

  3、小数的改写。

  (1).出示例2,尝试练习,集体评析。

  (2).练习:把一个数改写成含有指定小数位数的小数。

  4.概念判断练习。如课本练习五第7题。

  5.小组小结并质疑。

  请同学们互相交流一下,这节课学会了什么?还有不清楚的地方吗?

  四、巩固练习

  p30~31 1~7

  五、家作

  《b》 练习五

《小数的性质》教案 篇3

  教学目标

  1.使学生对数的整除的有关概念掌握得更加系统、牢固.

  2.进一步弄清各概念之间的联系与区别.

  3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

  4.掌握分数、小数的基本性质.

  教学重点

  通过对主要概念进行整理和复习,深化理解,形成知识网络.

  教学难点

  弄清概念间的联系和区别,理解易混淆的概念.

  教学步骤

  一、铺垫孕伏.

  教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

  在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

  揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

  二、探究新知.

  (一)建立知识网络.【演示课件“数的整除”】

  1.思考:哪个概念是最基本的概念?并说一说概念的内容.

  反馈练习:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

  教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

  教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

  2.说出与整除关系最密切的概念,并说一说概念的内容.

  反馈练习:下面的说法对不对,为什么?

  因为15÷5=3,所以15是倍数,5是约数. ( )

  因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

  明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

  3.教师提问:

  由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

  根据一个数所含约数的个数的不同,还可以得到什么概念?

  互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

  互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

  4.讨论互质数与质数之间有什么区别?

  互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

  5.教师提问:

  如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

  只有什么数才能做质因数?

  什么叫做分解质因数?

  只有什么数才能分解质因数?

  6.教师提问:

  谁还记得,能被2、5、3整除的数各有什么特征?

  由一个数能不能被2整除,又可以得到什么概念?

  (二)比较方法.

  1.练习:求16和24的最大公约数和最小公倍数.

  2.思考:求最大公约数和最小公倍数有什么联系和区别?

  (三)分数、小数的基本性质.

  1.教师提问:

  分数的基本性质是什么?

  小数的基本性质是什么?

  2.练习.

  (1)想一想,小数点移动位置,小数大小会发生什么变化?

  (2)

  (3)下面这组数有什么特点?它们之间有什么规律?

  0.108 1.08 10.8 108 1080

  三、全课小结.

  这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

  联系和区别,并且强化了对知识的运用.

  四、随堂练习

  1.判断下面的说法是不是正确,并说明理由.

  (1)一个数的约数都比这个数的倍数小.

  (2)1是所有自然数的公约数.

  (3)所有的自然数不是质数就是合数.

  (4)所有的自然数不是偶数就是奇数.

  (5)含有约数2的数一定是偶数.

  (6)所有的奇数都是质数,所有的偶数都是合数.

  (7)有公约数1的两个数叫做互质数.

  2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇数有( );偶数有( );质数有( );合数有( );

  既是质数又是偶数的数是( ).

  4.按要求写出两个互质的数.

  (1)两个数都是质数.

  (2)两个数都是合数.

  (3)一个数是质数,一个数是合数.

  5.说出下面每组数的最大公约数和最小公倍数.

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作业

  1.把下面各数分解质因数.

  24 45 65 84 102 475

  2.求下面每组数的最大公约数和最小公倍数.

  36和48 16、32和24 15、30和90

  六、板书设计

  数的整除分数、小数的基本性质

  数学教案-数的整除 分数、小数的基本性质

《小数的性质》教案 篇4

  教学内容:

  教材p39页例3,例4.练习十

  教学目标

  知识与技能:通过自主探究学会小数的化简和改写小数。

  过程与方法:运用所学知识解决问题,养成探求新知的良好品质。

  情感态度与价值观:感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:

  学会化简小数和改写小数。

  教学难点:

  理解小数末尾。

  教法:

  启发引导法

  学法:

  观察、比较、合作交流

  教学用具:

  多媒体课件。

  教学过程

  一、定向导学:2分

  (一)准备

  1、说一说小数的性质,“小数末尾”指什么?

  2、揭示课题:小数的性质的应用

  (二)展示目标

  会运用小数的性质将小数进行化简和改写。

  二、自主学习:(5分钟)

  (一)化简小数

  内容:内容:课本p39例3

  时间:2分钟

  方法:将例3 补充完整,再完成下面练习。

  练习1、化简下面小数

  0.40 1.850 20.900 0.080 103.00 1.180 0.480

  (1--7组的4号发言,1号评价)

  (二)改写小数

  内容:内容:课本p39例4

  时间:3分钟

  方法:将例4 补充完整,再完成下面练习。

  练习2、把下面小数改写成三位小数。

  0.4 1.05 20.100 0.08 10 8.18 10.08

  (1--7组的5号发言,2号评价)

  三、合作交流(5分)

  “化简小数”和“小数的改写”时,小数的大小改变了吗?为什么?

  四、质疑探究:5分钟

  在运用小数的性质解决问题,关键是什么不能改变?

  五、小结检测:23分钟

  1、课堂小结:)

  谈谈你有什么收获?有什么感受?还有问题吗?

  2、检测:

  a、化简下面个数

  3.90.300 1.8000 500

  5.7800.0040102.02060.0

  b、不改变数的大小,把他们写成三位小数。

  (1)3.090.61100

  c、把相等的数用线连起来。

  6.07 10.3

  10.300 6.070

  0.2 0.900

  200.0700 0.02

  0.9 200.07

  3、堂清作业:课本p41、4.5

  板书设计 :

  小数性质的应用

  例3、化简小数。 (小数的末尾)

  0.70=0.7 105.0900=105.09

  例4、不改变数的大小,把下面各数写成三位小数。

  0.2=0.200 4.08=4.080 3=3.000

  整数改写小数,要点小数点。

《小数的性质》教案 篇5

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:

  让学生理解并掌握小数的性质。

  教学难点:

  能应用小数的性质解决实际问题.

  教学过程:

  一、创设情境,引导探索

  1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)

  二、探究新知、课中释疑

  1.教学例1

  比较0.1m 0.10m 0.100m的大小

  师:想一想括号里填上什么单位,才能使等式成立?

  1=10=100

  生汇报(重点讲解:1分米=10厘米=100毫米)

  你能把它们改写成用米做单位的小数的形式吗?

  根据学生回答归纳演示:1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米0.10米0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  3)指导看黑板:

  1分米= 10厘米= 100毫米

  0.1米= 0.10米= 0.100米

  4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。

  是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2

  比较0.3和0.30的大小

  1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)

  3)在两个大小一样的正方形里涂色比较。

  汇报结论:0.3=0.30

  4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)

  小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?

  生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。

  3.小数的化简

  师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)

  把0.70和105.0900化简.

  105.0900中“9”前面的“0”为什么不能去掉?

  (0.70=0.7;105.0900=105.09)

  教师强调:末尾和后面不同。

  师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  4.小数的应用

  1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4

  2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。

  (0.2=0.200;4.08=4.080;3=3.000)

  思考:“3”的后面不加小数点行吗?为什么?

  3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  三、巩固深化,拓展思维

  师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?

  挑战一:判断

  挑战二:连线

  挑战三:智力大比拼

  四、课堂小结

  这节课你有哪些收获?

  五、布置作业

  完成练习十1-3题。

《小数的性质》教案 篇6

  教学目标

  1、通过教学、实践使学生自己发现并掌握小数的性质。

  2、培养学生的抽象概括能力,动手能力。

  3、培养学生善于探索的精神。

  复习引入

  1、准备题(1)1元=( )角=( )分

  (2)在下面( )里填适当的小数。

  3角=( )元

  30分=( )元

  100毫米=( )米

  (3)0.4里面有( )个0.1

  0.40里面有( )个0.01

  2、引入:今天继续研究小数。

  体验发现

  1、课件出示例4:

  (1)读题

  (2)分组准备,讨论。

  (3)说出结果。0.3元=0.30元

  (4)为什么?

  学生阐明自己的观点。

  A、0.3元和0.30元都是3角,所以0.3元=0.30元。

  B、画图理解。

  C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。

  (5)这两个相等的小数,小数部分有什么不同?

  提问:小数部分末尾的0添上或去掉,什么变了,什么没变?

  (小数变了,小数的大小没有变)。

  2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。

  (1)学生自主填空。

  (2)交流自己的看法,并阐明观点。

  (3)汇报自己的结果。

  由1分米=10厘米=100毫米,得到0.1=0.10=0.100。

  (4)观察板书:

  你得到什么结论?学生自由发言。

  总结:小数的末尾填上“0”或去掉“0”,小数的'大小不变。这是小数的性质。

  理解内涵

  1、课件出示例5:

  学生自主填空。

  提问:这些小数中,哪些0可以去掉?指名回答。

  (着力于对小数“末尾”的理解。)

  结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  学生尝试做“练一练”第1题。独立完成,集体订正。

  2、试一试。

  不改变数的大小,把下面各数改写成三位小数。

  0.4=( )3.16=( )10=( )

  学生自主改写。

  交流:(1)改写这三个数时应用了什么知识?

  (2)为什么给三个数添上的“0”的个数不同?

  (3)“10”是整数,怎样在小数的末尾添上“0”?

  给学生充分的交流时间,进一步体验小数性质的应用。

  3、练一练第2题。

  学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。

  巩固练习

  练习六的1—5题。

  第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0。

  第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。

  这些练习题使学生在应用中掌握小数的性质。

  教学后记

  让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。

《小数的性质》教案 篇7

  教学内容:

  p.34—35的例5、例6及相应的试一试,练一练,完成练习六的第1—5题

  教学目标:

  1、使学生在建立猜想、验证猜想以及比较、归纳等活动中,理解小数的性质,会应用小数的性质化简或改写小数。

  2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

  教学重点:

  1、发现小数的性质并对小数的性质作出抽象概括。

  2、理解小数的性质,会应用小数的性质解决问题。

  教学难点:

  理解小数的性质,会应用小数的性质解决问题

  教具准备:

  教学挂图、课件

  教学过程:

  一、复习引入

  1、在下面里填适当的小数。

  0.40里面有个0.01

  3角=元

  30分=元

  二、体验发现,理解性质

  1、出示例5:指名读题,分组讨论。

  思考:小数部分末尾的0添上或去掉,什么变了,什么没变?

  2、完成试一试:

  (1)学生自主填空。交流自己的看法,并阐明观点。

  (2)汇报自己的结果。

  (3)观察板书:你得到什么结论?学生自由发言。

  三、理解内涵,学会应用。

  1、课件出示例6:这些小数中,哪些0可以去掉?指名回答。学生自主填空。学生尝试做练一练第1题。独立完成,集体订正。

  2、试一试。给学生充分的交流时间。

  四、巩固练习

  五、小结

《小数的性质》教案 篇8

  教学程序

  (一)谈话法导入新课

  在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00 元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今 天要学习的内容,并板书“小数的性质”。

  (二)讲授新课

  1.研究小数的性质

  (1)出示例1,比较0.1米,0.10米和0.100米的大小。

  首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出1分米、10厘米、100毫米是同一点,说 明:1分米=10厘米=100毫米(板书)。

  请同学们看米尺想,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样 的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)

  板书:因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  在这里应用直观演示法,变抽象为具体。然后板书准备比较,观察上下两个等式,说明0.1、0.10、0.100 相等,再添上“因为”、“所以”、“=”。

  a.从左往右看,是什么情况?(小数的末尾添上"0",小数大小不变)

  b.从右往左看是什么情况?(小数的末尾去掉"0",小数大小不变)

  c.由此,你发现了什么规律?(小数的末尾添上"0"或去掉"0",小数的大小不变)

  在这里应用了比较法,便于发现规律,揭示规律,总结性质。

  (2)为了进一步证明小数性质的可靠性出示例2:比较0.30和0.3的大小。(图略)

  教师指导学生自学例2。

  教师指示,学生思考:

  ①左图是把一个正方形平均分成几份?(100份)阴影部分占几分之几?(30/100)用小数怎样表示?(0.30 )

  ②右图是把一个正方形平均分成几份?(10份)阴影部分占几分之几?(3/10)用小数怎样表示?(0.3)

  ③引导学生小结从图上可以看出:0.30是30个1/100,也是3个1/10。0.3是3个1/10。所以得出:0.30=0.3 。

  ④由此,你发现了什么规律?

  师生共同小结、板书如下:

  例2:0.30=0.3

  小数的末尾添上"0"或者去掉"0",小数的大小不变,这叫做小数的性质。

  为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添"0"或去"0",小数的大小就不变 呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉 ?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例 说明)整数是否具有这个性质?(没有,理由同上第二点)

  2.小数性质的应用

  教师谈话:根据这个性质,遇到小数末尾有"0"的时候,一般地可以去掉末尾的"0",把小数化简。

  (1)化简小数

  出示例3:把0.70和105.0900化简。

  提问:这样做的根据是什么?(把小数末尾的"0"去掉,小数的大小不变)弄清题意后,学生回答,教师板 书:0.70=0.7;105.0900=105.09。通过这组练习巩固新知,为以后小数作结果要化简作准备。

  口答:课本“做一做”第1题。

  (2)把整数或小数改写成指定数位的小数

  教师谈话:有时根据需要,可以在小数的末尾添上"0";还可以在整数的个位右下角点上小数点,再添上" 0",把整数写成小数的形式。

  如:2.5元=2.50元 3元=3.00元

  出示例4:不改变小数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  小组讨论后,2人板演,其余学生齐练,订正,表扬。

  0.2=0.200 4.08=4.080 3=3.00

  练习:口答课本第65页的“做一做”第2题。

  讨论小结:改写小数时一定要注意下面三点:

  a.不改变原数的大小;

  b.只能在小数的末尾添上"0";

  c.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添"0"。(想一想为什么)

  3.学生仔细阅读课本第64页的例1、例2,记住并理解小数的性质;阅读课本第65页例3、例4掌握小数性质 的应用。

  五、巩固练习

  1.练习十三第1题:下面的数,哪些"0"可以去掉,哪些"0"不能去掉?指名同桌对口令,其余学生当小评委 。

  第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他 同学准备当朋友。

  第3题:下面的数如果末尾添"0"哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律( 小数的末尾添"0"大小不变,整数的末尾添"0"大小变了)。

  第4题:化简下面小数,采取抢答来完成。

  第5题:先填书上再口答订正。

  2.练习十三第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练, 评价鼓励。

  附板书设计:

  小数的性质

  例1:比较0.1米、0.10米和0.100米的大小。

  因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  0.1=0.10=0.100

  ──────→

  ←──────

  例2:0.30=0.3

  小数的末尾添上"0"或者去掉"0",小数的大小不变。这叫做小数的性质。

  教学反思

  本课要多练习小数点的前后和末尾分别有0的对比练习,强化“末尾”

《小数的性质》教案 篇9

  【教学内容】

  人教课标版小学四年级下册第58、59页的内容:小数的性质

  【学情分析】

  小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

  【教学目标】

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  【教学重难点】

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  【教法与学法】

  1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

  3、培养学生共同合作,相互交流的学习方法。

  【教学准备】

  教师:自作课件

  学生:收集的标签彩笔直尺和纸条

  【教学过程】

  一、创设情境,导入新课

  1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

  生:2、00元,师:是多少钱呢?生:2元。

  生:3、50元。师:是多少钱?生:3元5角

  师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  板书课题:小数的性质

  设计意图:联系生活实际,达到知识的迁移。

  二、提出问题、探索新知

  1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0.1米,0.10米和0.100米长的纸条,各打上记号。各小组合作共同完成。

  老师巡视并引导学生观察米尺图

  2、各小组汇报:结合学生回答,教师板书:

  0.1米是1/10米,就是1分米

  0.10米是10/100米,就是10厘米

  0.100米就是100/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0.l米=0.10米=0.100米

  教师小结:这三个数量虽然各不相同,但表示大小相等、

  设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

  3、观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

  教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

  师质疑:那整数有这个性质吗?

  学生分小组讨论,并举例证明得出结论。

  (师强调出小数与整数的区别)

  设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

  4、练一练:

  (1)多媒体出示58页做一做:比较0.30与0.3的大小

  师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  (2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

  (3)在两个大小一样的正方形里涂色比较。

  汇报结论:0.3=0.30

  师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30.)

  设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

  5、小数性质应用、【继续演示课件“小数的性质”】

  (1)教学例3:把0.70和105、0900化简、

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  105、0900中“9”前面的“0”为什么不能去掉?

  (0.70=0.7;105、0900=105、09)

  教师强调:末尾和后面不同。

  (2)教学例4:不改变数的大小,把0.2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

  (0.2=0.200;4、08=4、080;3=3、000)

  思考:“3”的后面不加小数点行吗?为什么?

  (3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

  三、巩固深化,拓展思维

  1、完成59页的做一做。

  重点指导学生说一说为什么有些“0”不能去掉和

  说一说为什么有些数的末尾添上“0”,原数就发生了变化、

  2、挑战自我。

  (1)谁能只动三笔,让下面三个数之间划上等号?

  6020 = 602 =60200

  (2)每人写几个和3、200相等的数、

  设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

  四、全课小结

  1、这节课你有哪些收获?

  2、你对自己或同学有什么评价?

  五、布置作业、

  完成练习十1—3题。

  板书设计:

  小数的性质

  例1 1分米= 10厘米= 100毫米

  从右往左从左往右

  0.1米= 0.10米= 0.100米

  小数的末尾添上0或者去掉0,小数的大小不变。

  0.3= 0.30 =0.300

  例2化简小数。

  0.70= 0.7 105.0900=105.09

  例3不改变数的大小,把下面各数写成三位小数。

  0.2=0.200 4.08=4.080 3=3.000

《小数的性质》教案 篇10

  教学目标:

  1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。

  2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。

  3、在数学探究活动中树立学习数学的信心和兴趣。

  教学重点:

  小数的性质。

  教学难点:

  理解小数的性质。

  教具学具准备:

  课件、练习纸。

  教学过程:

  一、创设情境,激发兴趣

  师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。

  生1:法术失灵了。

  生2:0.1,0.10,0.100米这三个长度一样长。

  老师板书:0.1米,0.10米,0.100米

  二、主动探素,体会领悟

  1、初步感知小数的性质。

  师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。

  拿出老师提供的空白练习纸,把你的想法写下来。

  (1)学生动手写下来。

  (2)学生汇报。

  生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

  生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。

  老师适时板书:0.1米=0.10米=0.100米。

  (3)观察0.1=0.10=0.100初步认识小数的性质。

  师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。

  生1:在小数的后面加上一个0或加上两个0,小数大小是一样。

  生2:在小数的末尾添上0,小数大小不变。

  生3:在小数的末尾去掉0,大小是一样的`。

  2、深化认识小数的性质。

  (1)纯小数中比一比

  师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。

  练习纸:

  两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。

  三个大小相等的正方体,分别平均分成10份、100份、1000份。

  生动手写小数,涂一涂,比一比,师适时板书。

  (2)混小数中比一比

  师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?

  出示一组混小数,让学生写小数,比一比。

  师:大屏幕上的涂色部分应该用哪两个小数来表示?

  生:1.2和1.20

  师:它们相等吗?

  生:看涂色部分是一样大的。

  师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?

  生举例:如1.5=1.50,2.6=2.60

  师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。

  (3)小结小数的性质,揭示课题。

  生1:小数的后面无论添上几个0,它都不变。

  生2:小数的末尾添上0,去掉0,大小都不变。

  根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  师:这就是我们今天来学习的内容:小数的性质(板书课题)

  3、探究小数性质的内涵

  师:下面请看到大屏幕,

  这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20__变成15.2。(借助数位顺序表,动画演示添0,去0的过程)

  4、教学小数性质的应用

  (1)化简小数

  师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?

  生汇报,如:109.900中末尾的2个0可以去掉。

  师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),

  出示例3,化简小数:0.70 105.0900

  生独立完成,汇报,师讲评。

  0.70=0.7 105.0900=105.09

  (2)改写小数

  师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)

  出示教学例4,不改变数的大小,把下面各数写成三位小数。

  0.2 4.08 3

  三、应用新知、解决问题。

  1、做一做

  (1)化简下面各数。

  0.40 1.850 2.900 0.080 12.000

  (2)不改变数的大小,把下面各数写成三位小数。

  0.9 30.04 5.4 8.18 14

  2、辨一辨:

  因为0.2=0.20,所以0.2和0.20没有区别。

  3、填一填

  把0.9改写成计数单位是千分之一的数是( ),把800个0.001化简是( )。

  四、总结交流

  通过本节课的学习,你有什么收获?

  板书设计:

  小数的性质

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  1分米10厘米100毫米

  0.1米=0.10米=0.100米

  0.1=0.10=0.100

  0.3=0.30

  1.2=1.20

《小数的性质》教案 篇11

  教学内容:

  小数的性质

  教学目标:

  1.知道小数的末尾添上“0”或者去掉“0”,小数的大小不变,理解其中的算理。

  2.会运用小数的性质进行小数的化简与改写。

  教学重点:

  掌握小数的性质。

  教学难点:

  理解“小数的末尾添上‘0’或者去掉‘0’,小数大小不变”的道理。

  教学设计:

  (一)导入阶段

  1.做“找朋友”游戏(把相等的两个数找出来)。如:7/10、0.307、0.21、307/1000、21/100、0.7等。

  在回答的同时,可以让学生讲述上题中小数的计数单位和有几个这样的计数单位。

  2.结合实例引入。

  如:说说下面各数表示几元几角几分?

  0.6元 0.60元 2.3元 2.30元 4.00元 4 元

  回答后,让学生想想可以发现什么。

  比较0.1米、0.10米、0.100米的大小。

  教师可以启发学生讲述比较几个具体数量之间大小的过程,也可以让学生讨论后讲述比较的过程。

  (二)探究阶段

  出示例1,提出问题,学生讨论,得出等式。

  问题:怎样比较例题中三个小数之间的大小?

  讨论:结合直观图,讨论得出解决问题的方法:把三个小数分别改写成分数来比较。

  等式:因为4/10、40/100、400/1000分数大小相等,所以0.4=0.40=0.400。

  引导观察,找出规律,看书对照,学习性质。

  观察:“从左往右”看或“从右往左”看,小数的末尾发生了什么变化?

  规律:小数的末尾添上“0”,小数的大小不变。小数的末尾去掉“0”,小数的大小不变。

  看书:看书后得知,找出的规律就是新学的知识:小数的性质。(揭示课题)

  (三)运用阶段

  1.课本“练一练”第1题。

  2.课本“练一练”第2题。

  3、小数的改写。

  (1).出示例2,尝试练习,集体评析。

  (2).练习:把一个数改写成含有指定小数位数的小数。

  4.概念判断练习。如课本练习五第7题。

  5.小组并质疑。

  请同学们互相交流一下,这节课学会了什么?还有不清楚的地方吗?

  (四)、巩固练习

  P30~31 1~7

  (五)、家作

  《B》 练习五

《小数的性质》教案 篇12

  教学内容

  人教版数学第八册第四单元“小数的性质”

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:

  让学生理解并掌握小数的性质。

  教学难点:

  能应用小数的性质解决实际问题

  教学过程:

  一、谈话导入、课前质疑

  1、师:今天老师给同学们准备了一个小魔术,我们来看看。

  这个数认识吗?几呀?出示数字卡片:1

  我能让这个数变大,看仔细哟。(添了一个0)

  这个1的末尾添了一个0,这个数发生了什么变化?

  老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。

  看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)

  师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。

  2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?

  这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?

  在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。

  板书:猜想 验证

  二、探究新知、课中释疑

  1.探究0.1米,0.10米,0.100米的大小

  (1)有以有的知识来解释一下这三个数的大小。

  请比较一下它们的.大小。

  板书:1分米=10厘米=100毫米

  (2)导入例1:

  你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。

  导:分米和米有什么关系?厘米、毫米呢?

  根据学生回答归纳演示:

  1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米 0.10米 0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  学生很快回答后课件演示。并在他们之间加上等号。

  我们还可以用重合法比较一下。(课件演示)

  (3)指导看黑板:

  1分米 = 10厘米 = 100毫米

  0.1米 = 0.10米 = 0.100米

  提问:这说明了什么问题?

  请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?

  小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2。

  (1)比较1.30和1.30的大小。

  导:想想0.30表示什么意思?0.3呢?应该涂多少格?

  学生涂完色问:你为什么这样涂?之后演示涂色过程。

  (2)同桌商量比较,汇报结论。

  问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?

  直观比较法:看上去都一样大;

  理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10.

  课件演示重合图形。(在原板书下再板书:1.30=1.3)

  (3)观察思考

  观察板书1.30=1.3

  这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。

  3. 讨论归纳

  教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?

  教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)

  4、指导阅读。

  讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。

  5、质疑问难:(判断)

  你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)

  (1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。

  举例说明后返回小数的性质,红字强调“小数”。

  (2)小数点的后面添上“0”或去掉“0”,小数的大小不变。

  举例说明后返回小数小性质,红字强调“末尾”。

  (3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。

  三、巩固运用、交流反思

  小数的性质有什么作用呢?

  强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.

  l.出示例3:把0.70和105.0900化简。

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  (1)提问:0.70你认为可以怎么化简才能大小不变?

  (2)学生自己完成。指名回答,让其说说这样做的根据是什么?

  (3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)

  (4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?

  0.40 1.820 2.900 0.080 12.000

  回答后小数末尾的0红色闪现。

  问12应该去掉0后是多少?还可以怎样表示?

  强调:12去掉0后,小数部分没有数,可以把小数点也去掉。

  过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数

  2.出示例4:。

  不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  想想可以怎么做?

  (1)学生自己完成。

  (2)大家这样做的根据是什么?3能不能直接在后面添0?

  (3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?

  3.4 18 0.06 700 3.0 4.90

  整数和小数用不同的颜色区分。

  如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)

  五、课堂小结

  1.这节课你学到了哪些知识?有哪些收获?

《小数的性质》教案 篇13

  教学目标:

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  教学重难点:

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  教学过程:

  一、 创设情境,引入新课

  师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?

  生:扩大了10倍。

  师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?

  生:末尾添了2个“0”,扩大了100倍。

  师:那我们能让它变小么?

  生:把末尾的“0”去掉。

  师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?

  生:略。

  师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?

  生:不会变。

  师:那我再添上一个“0”呢?

  生:还是不变。

  师:你是怎么知道的?

  生:略。

  师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?

  生:验证。

  二、讲授新课

  师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。

  (生动手操作)

  师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?

  (生汇报)

  师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。

  生:略。

  师:有没有哪个小组是借用皮尺来验证的,谁来说一说?

  (生汇报)

  师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。

  师:有哪个小组是借用数位顺序表来验证的么?

  (生汇报)

  师:还有哪个小组也来说说你们组研究的结果。

  师:刚才我们借用了教具来验证我们的'猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……

  生:略。

  师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?

  生:略。

  师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?

  师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。

  师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。

  生:略。

  师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?

  生:略。

  师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。

  三、巩固练习

  师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?

  生:略。

  师:1.05中的0可以去掉么?

  生:不能,因为0不在末尾。

  师:那你们认为在小数性质这句话中,哪个词是最重要的?

  生:末尾。

  师:接下来,我们来看这题,你们知道什么是化简么?

  生:略。

  师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?

  生:略。

  师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。

  生:略。

  师:今天我们学习了小数的性质,大家知道了什么?

  生:略

  师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。

  师:好的同学们,今天这节课上到这,下课。