小数的性质数学教学教案

2023-11-15

小数的性质数学教学教案 篇1

  教学内容:

  四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

  教学目的:

  1.引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

  教学重点:

  让学生理解并掌握小数的性质.

  教学难点:

  能应用小数的性质解决实际问题.

  教学步骤:

  一、创设情境,导入新课。

  创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

  为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  二、出示课题,提出目标。

  1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

  三、自学尝试,探究新知。

  1.出示尝试题

  (1)1、10、100这三个数相等吗?你能想办法使它们相等吗?

  (2)你能把1分米、10厘米、100毫米改用“米”作单位表示吗?

  (3)改写成用米作单位表示后,实际长度有没有变化?说明什么?

  (4)“0.1米= 0.10米=0.100米”这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?

  2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

  3.根据自学情况引导讲解。

  四、拓展练习,验证结论。

  为了验证我们的这个结论,我们再来做一个实验。

  1.出示做一做:比较0.30与0.3的大小

  你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  2.想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好)

  3.在两个大小一样的正方形里涂色比较。

  (1)左图把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

  (2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

  (3)小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  概括总结:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质。

  过度:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。

  五、应用新知,尝试练习。

  (1)出示例3:把0.70和105.0900化简.

  例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  (2)学生自学课本后讨论交流,尝试练习。

  (3)引导探究:哪些“0”可以去掉,哪些“0”不能去掉?

  105.0900中“9”前面的“0”为什么不能去掉?

  “3”的后面不加小数点行吗?为什么?

  (4)同桌讨论:应用小数的性质时,要注意什么?

  六、巩固新知,当堂检测。

  1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉?

  3.90米0.30元500米1.80元0.70米0.04元600千克20.20米

  2.下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化?

  3.418 0.06 700 3.0 908 104.03 150 10.01 42.00

  3.化简下面的小数.

  0.40 1.850 2.900 0.080 12.000

  4.不改变数的大小,把下面各小数改写成小数部分是三位的小数.

  0.9 30.04 5.4 8.18 14

  5.判断.

  5.00元=5元( ) 7元=0.7元( ) 8米=8.00米( )

  2.04吨=2.4吨( ) 4.5千克=4.500千克( ) 0.60升=0.6升( )

  6.用元作单位,把下面的价钱写成小数部分是两位的小数。

  3元2角、6角、8元、1元零3分

小数的性质数学教学教案 篇2

  一.教学内容:

  第34~35页的例5、例6及相应的“试一试”、“练一练”,练习六第1~5题

  二.教材解读:

  本课结合现实情境,通过引导学生自主观察、比较和归纳,探索小数的性质。例5先通过两个小朋友交流铅笔和橡皮单价的情境,引起学生进行比较的需要,通过比较,使学生初步感知小数末尾添上0,小数的大小不变。例6结合购物的情境,通过讨论一组食品单价中哪些“0”可以去掉,引导学生在应用小数性质去掉小数末尾的“0”的活动中,学会化简小数,并加深对小数性质的理解。

  三.目标预设:

  1.使学生经历小数性质的探索过程,理解小数的性质,学会运用小数的性质把一些小数进行化简或改写。

  2.培养观察、比较、抽象、概括以及合情推理的能力,发展学生的数感。

  3.引导学生感受数学与生活的联系,增强自主探索和合作交流的意识。

  四.教学重点、难点:

  探索小数的性质。

  五.资源利用

  学生经验

  通过前几节课的学习,学生已经认识了小数的意义,掌握了小数的读写方法、数位顺序及计数单位。在日常生活中已积累了部分有关小数的生活经验,如:会看各种文具、食品的价格等。

  教学准备

  教学挂图、例6的食品价格牌、小黑板。

  六.课程实施

  1.引入

  我们已经认识了小数,知道小数在生活中有着广泛的应用。

  出示例5情境图,提问:看了这幅图,你了解到了哪些信息?想提出哪些问题?

  2.探究

  教学例5。

  刚才有同学提到,这两件文具的单价实际上是相等的,你们同意他的看法吗?

  照你们的想法,可以用等号把0.3和0.30这两个小数连接起来(板书:0.3=0.30),不过这只是我们的猜想。

  进一步启发:谁能想办法解释0.3和0.30为什么相等吗?

  学生独立思考后,把想法和同桌相互交流。

  学生活动后再组织全班交流,并引导学生分别从钱数的多少和每个小数所含计数单位的个数进行解释。

  教学例5后“试一试”。

  小黑板出示一把有刻度的学生尺,提问:你能在直尺上分别找出100毫米、10厘米、1分米的位置吗?知道他们分别是几分之几米吗?写成小数又分别是多少呢?

  解决上述问题后,追问学生:你能比较0.100米、0.10米、0.1米的大小吗?说一说你的理由。

  根据学生的回答,板书:0.100米=0.10米=0.1米。

  引导学生进一步分析:能否用其他的方法说明0.1=0.10=0.100?

  总结和归纳。

  谈话:通过上面的两个例子,你发现了什么?把你的想法和小组里同学说一说。

  全班交流:提问:你发现了什么规律?

  教师小结:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。(板书课题:小数的性质)

  我当小裁判:

  ①小数点后面添上0或去掉0,小数的大小不变。

  ②小数的末尾添上0或去掉0,小数的大小不变。

  ③一个数的末尾添上0或去掉0,这个数的大小不变。

  教学例6

  出示例6情境图,提问:小强买了四种食品,这些食品的价钱中,哪些0可以去掉?先在书上填一填。

  学生完成书上的填空后,组织交流反馈。

  小结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。4.00元可以化简成4元,由此得出整数可以看成是小数部分是0的特殊小数。

  教学例6后的“试一试”。

  出示“试一试”,提问:你能不改变小数的大小,把下面各数改写成三位小数吗?

  学生完成后,组织反馈。重点指导把10改写成三位小数的方法。

  练一练。

  ①指导完成“练一练”第1题。学生练习后,结合交流让学生再说一说每组的两个小数是否相等。

  ②指导完成“练一练”第2题。学生独立练习,交流后提问:两道题中的数,为什么第①题的0.5和0.50相等,而第②题中0.5和0.05不等?你能从其他角度解释一下吗?引导学生从多角度分析,并再次明确小数末尾的0才能去掉。

  3.应用

  练习六第1题。

  先让学生在小组里说一说,再指名口答。

  追问:703.0505左边的0为什么不能去掉?

  练习六第2题。

  练习后追问学生:为什么不能把0.018和0.180连起来?

  练习六第4题。

  学生练习后,重点讨论:80

  是怎样改写成三位小数的?

  练习六第5题。

  学生练习后,讲解:用“元”作单位表示人民币的数量时,因为“元”后面还有“角”和“分”,所以通常要用两位小数表示。

  4.课堂作业

  ①练习六第3题。

  ②在里填上合适的两位小数。

  橡皮毛巾

  5角=元6元6角=元

  直尺牙刷

  1元零5分=元3元2角=元

  七.课后感想:

  1.让学生在已有经验的基础上构建和生成新的数学知识

  课始直接出示例5情境图,提问:看了这幅图,你了解到了哪些信息?想提出什么问题?只是用简短的提问带出了课本上的情境,展示给学生,没有刻意地去创造多么复杂、多么热闹的情境,因为情境只是为课堂教学服务的一个手段,达到效果就行。尽管这样的开课很朴实,但朴实中不失实效,使学生及时进入另一个“场景”。

  0.3元和0.30元相等吗?这个问题学生不难回答,大部分学生都能根据自己已有的知识经验作出肯定的回答。于是我进一步启发:谁能想办法解释0.3和0.30为什么相等吗?学生独立思考后,把想法和同桌相互交流,学生活动后再组织全班交流。大部分学生想到了0.3元是3角,0.30元是30分也是3角,所以0.3元=0.30元;也有学生解释0.3是3个0.1,0.30是30个0.01,30个0.01就是3个0.1,所以0.3元=0.30元;也有学生从小数意义的角度来解释;还有学生更直观了,通过画线段图来解释。学生的已有知识经验被唤醒了,思路打开了,思维活跃了,于是我趁热打铁,让学生比较0.100米、0.10米和0.1米的大小。我们的教学要依据学生的思维特点,尊重学生的个性差异。这个环节的教学设计充分发挥了学生的主体作用,让学生经历了一个完整的探究过程,为学生构建新知搭建了平台。

  2.学生越过表象,识别表象后蕴藏的规律

  合理猜想,大胆验证是学生自觉思维的体现,但这种直接经验还必须上升为科学的理论,这就需要学生能越过表象,识别表象后蕴藏的规律,这样才能知其然而知其所以然,便于举一反三,解决同类相关问题。于是我及时引导学生归纳总结,学生通过独立思考,小组讨论,全班交流,总结出小数的性质。接着我又设计了我当小裁判这样一个补充练习,再次突出小数末尾的0才能去掉,让学生更好的理解掌握了小数性质,突出了重点,突破了难点。

  最后,通过改一改、填一填、涂一涂、划一划、连一连等多样的练习,让学生及时巩固所学知识,调动了学生学习的积极性。

小数的性质数学教学教案 篇3

  [教材简析]

  这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。

  [教学目标]

  1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。

  2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,

  3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。

  [教学过程]

  一、复习旧知,引发冲突

  1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)

  我们再从右往左看,500去掉一个0,发生了什么变化?

  2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)

  谁的猜想正确?我们可以用什么方法证明?(举些例子)

  [设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]

  二、实例作证,体验小数性质的合理

  1、创设情境,初步感知

  (1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?

  (2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。

  (3)学生活动后组织全班交流,可能出现如下的比较方法:

  ①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。

  ②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。

  ③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。

  (4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。

  教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。

  [设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断0.3元=0.30元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证0.3元=0.30元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]

  2、试一试,加深体验

  谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。

  (1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。

  (2)交流比较方法:说说你是怎样比较的?

  可能出现如下的方法:

  ①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?

  ②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。

  (3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?

  使学生初步体验小数的末尾去掉“0”,小数的大小不变。

  [设计意图:“为什么去掉0.100米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现0.100米、0.10米和0.1米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]

  3、总结体验,概括表达

  上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。

  小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。

  刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?

  4、突出“末尾”,体验内涵

  牛奶2.80元

  面包4.00元

  汽水3.05元

  火腿肠0.65元

  (1)小强去超市购买了一些物品,得到一张购物单(出示例5):

  合计10.50元

  请你帮他找一找:这些物品的价格中哪些“0”可以去掉?

  在书上填一填。

  学生完成后进行全班交流:

  ①2.80元=2.8元。说说你是怎样想的。

  想法一:根据小数的性质,直接去掉末尾的“0”。

  得到2.80元=2.8元。你还能用其它方法证明吗?

  想法二:2.80元是2元8角,2.8元也是2元8角。

  想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。

  谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。

  ②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。

  由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)

  (2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?

  [设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的专项教学——辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵——突出小数“末尾”。]

  三、解决问题,体验小数性质的应用

  1、小数的化简

  根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。

  化简下面的小数:0.400 0.080 1.750 29.00

  学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?

  2、小数的改写

  试一试:不改变数的大小,把下面各数写成三位小数。0.4 3.16 10

  学生独立思考,在书上填空。

  完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?

  小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。

  如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。

  四、巩固应用,深化小数性质的体验

  1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。

  完成后观察每组中的两个数,你有什么发现?

  0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?

  2、完成练一练第2题。先涂色表示各小数,再比一比。

  交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?

  教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。

  [设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]

  3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?

  4、完成练习六第4题。学生独立改写。

  交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。

  5、完成练习六第5题。

  提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)

  学生独立改写后交流。

  谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)

  五、总结延伸

  通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。

  0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

小数的性质数学教学教案 篇4

  教学目标:

  1.在学生初步认识分数和一位小数的基础上,继续认识两位小数;通过具体形象材料为依托让学生建立起活灵活现的小数形象,加深对小数的理解,正确理解小数的意义; 掌握小数的计数单位。认识小数与十分之几、百分之几的关系。

  2.通过小数的产生,培养学生分析、推理的能力。

  3.通过小数的应用,激发学生的学习兴趣。

  教学重点:

  掌握小数的计数单位。

  教学难点:

  理解小数的产生。

  教学过程:

  一、让学生充分感受生活中小数的应用。

  师:一个大练习本多少钱?一支钢笔呢?在标签上它们都是怎样写的?你还在哪些地方见过这样的数吗?你知道它们是什么数吗?看书第2、3页,了解小数在生活中的应用。

  你还记得小数是怎么产生的吗?

  今天我们一起来继续研究小数。(板书:小数的意义)

  二、通过回顾探究,研究两位、三位小数意义。

  (一)通过把一条一米长的线段看做整体1认识十分之一、百分之一的小数。

  1.十分之一的小数

  (1)投影显示:把一条一米长的线段看成整数1,平均分成10份,其中的一份用分数怎么表示?(板书:十分之一)

  师:十分之一也可以写成另一种形式,看我是怎么写的。(板书:0.1)

  0.1就是一个小数,它的计数单位也就是十分之一,在十分位上。小数里的点叫小数点。

  说说0.1的计数单位是什么?十分之一表示什么?0.1表示什么?

  师总结:十分之一和0.1的意思相同,只不过表现形式不同。

  追问:十分之四是把谁平均分成几份?表示这样的几份?

  0.1是把谁平均分成几份?表示这样的几份?

  (2)阴影部分显示3份。

  问:现在阴影部分表示几份? 是几个十分之一? 是几分之几?

  用小数怎么表示? 0.3表示什么?

  (3)阴影部分显示7份。

  师:阴影部分用小数、分数各怎么表示?

  0.7和十分之七都表示把谁平均分成几份?是几份中的几份?

  0.7里面有几个0.1? 它的计数单位是什么?

  师小结:象这些都是特殊的分数,可以用小数来表示。

  (4)通过练习巩固十分之几的数。

  ①生自己动手操作。用一个正方形代表整数1画出相应的阴影部分,并用分数和小数表示出来。

  ②师投影出示2份用小数表示0.2,问:0.2是几个0.1?

  投影显示6份用小数表示0.6。问:0.6是几个0.1?(0.6里面包含0.2)

  师:你发现了什么?

  把0.6平移开,问:你又发现了什么?

  2.通过生活认识百分之几的小数。

  (1)百分之几的小数。

  ①把一个正方形看作整数1平均分成10份,其中的一份是多少?把正方形再继续平均分成100份,每份是多少?(出示:百分之一)

  也可以写成0.01。(板书:0.01)

  问:0.01的计数单位是什么?和0.01有什么相同和不同?

  ②认识百分之几的小数

  投影显示8份问:现在是几份? 是几个百分之一? 是百分之几?

  用小数怎么表示?(0.08)

  0.08的计数单位是什么? 有几个0.01? 8个0.01是多少?

  3.认识千分之几的小数。

  师:我们以前学过 1千克=1000克

  根据刚才学习的方法,你能说一说1克用千克表示成小数是多少?(讨论)

  1克 =( )千克(用小数表示)

  练习: 3 克 =( )千克

  11克 =( )千克

  108克 =( )千克

  4.小结:

  (1)刚才通过学习,我们认识了这么多小数,到底什么是小数?归纳小数的意义。上面的0.1,0.4表示十分之几,0.01,0.18表示百分之几,0.001,0.284表示千分之几。这种用来表示十分之几、百分之几、千分之几的数叫做小数。

  (2)说一说你对小数有了哪些新的认识?