比的基本性质教案

2023-08-18

比的基本性质教案 篇1

  教学目标

  1、理解比的基本性质。

  2、利用比的基本性质正确化简比。

  教学重难点

  利用比的基本性质正确化简比。

  课前准备、 实物投影仪

  教学过程个人使用批注

  一、创设情境,提出问题

  一、听算练习:

  求比值: 2:0.5 4:1 20:5 200:50

  90:60 9:6 3:2 0.3:0.2

  两个同学板演:写出过程。通过计算你有什么发现?每个比式之间会有什么联系?(提出学习目标)

  二、引导探究,解决问题

  1、观察黑板上的算式,你有什么发现:

  生的发现:前面四个比的比值相等,后面四个比的比值相等。

  板书算式: 2:0.5 = 4:1 = 20:5 = 200:50 = 4

  (2×2) :(0.5×2) (20×10):(5×10)

  90:60 = 9:6 = 3:2 = 0.2:0.3 = 1.5

  (90÷10):(60÷10) (3÷10):(2÷10)

  观察第一组比,他们的比值是相等的,前项和后项有什么变化?

  以前两个比和后两个比为例,找同学说出自己的发现。

  教师添加板书,渗透格式的书写。

  让学生多说自己的发现,从①到③,从①到④,从②到④等,

  然后小结规律:比的前项和后项同时乘同一个数,比值不变。

  2、观察第二组比,发现规律:方法同上。

  比的前项和后项同时除以同一个数(0除外),比值不变。

  (有分数的基本性质做定势,0除外这个关键点学生不会忘记,在这里只须问一句为什么?就可以将这个要点突破)

  3、将上面两个规律综合小结:

  比的前项和后项同时乘或除以同一个数(0除外),比值不变。 这叫做比的基本性质。

  4、出示课题:(比的基本性质)

  5、理解概念,找出关键词。

  6、利用比的基本性质做出准确判断:

  ① 8:10 =(8+10):10+10 = 18:20 ( )

  ② 12:16=(12÷6):(16 ÷ 4)= 2:4 ( )

  ③ 0.8:1=(0.8×10):(1×10)=8:10 ( )

  ④ 比的前项乘3,要使比值不变,比的后项应除以3。 ( )

  7、学习了比的基本性质,你联想到了我们以前学过的那部分知识?

  学生很容易想到这些内容,比的基本性质,商不变性质。联系旧知,形成系统的知识体系。我们刚刚学过分数、除法、比的联系,他们的性质能联系在一起也就不足为奇了。

  问:比的基本性质在数学上有什么用途?(约分、通分)

  商不变的性质有什么用途?(1.2÷0.3 500÷10 )

  那么我们刚刚学过的比的基本性质有什么用途呢?

  学生已经预习过,故学生应该知道利用比的基本性质可以化简比。

  8、观察黑板上的两组等式,哪一个比最简单?学生回答,教师板书:

  像1:4 3:2这样的比叫做最简整数比。

  请学生举出最简比的例子,多找几个学生回答,

  学生在举例的同时加深了对最简整数比的认识。

  由学生总结。最简整数比的特点:

  学生总结,教师板书。

  1、比的前项后项必须都是整数。

  2、比的前项后项必须是互质数。

  以后我们写出的比应该都化简成最简整数比。

  9、化简比:

  出示例题:“神州”五号搭载了两面联合国旗,一面的长是15厘米,宽是10厘米,另一面长是180厘米,宽是120厘米。写出这两面旗长与宽的比,并化成最简整数比。

  学生口答写出比: 15:10 180:120

  由于学生已经预习,因此化简的过程教给孩子。尝试练习,找同学板演:

  汇报,学生讲解化简过程,教师规范化简格式。

  化简分数比: 1/6 : 2/9 7/12 :3/8

  化简小数比: 0.5:0.4 0.75:0.25

  这部分内容的学习交给孩子自己,发挥学生的主体作用,学生尝试练习,学生讲解。最后让学生讨论化简整数比,分数比,小数比的方法。

  化简整数比时,比的前项和后项同时除以它们的最大公因数。

  化简分数比时,比的前项和后项同时乘分母的最小公倍数。

  化简小数比时,先把小数比化成整数比,然后再化成最简比。

  三、巩固训练,拓展延伸

  1、等比接龙:

  2:3=20:30=4:6=200:300=( )=( )=( )=( )

  100:50=40:20=( )=( )= ( )=( )

  2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是( ),工效比是( )。

  3、甲是乙的1.2倍,甲与乙的比是( )。

  4、甲是乙的1又1/4倍,甲与乙的比是( )。

  四、完善认知

  通过本节课学习?你懂得了什么?还有什么疑问吗?

  教后反思:

比的基本性质教案 篇2

  教学目标:

  1、学生理解并掌握比的基本性质,能应用比的基本性质化简比。

  2、理解知识之间的内在联系,培养迁移、类推的能力。

  3、培养思维的灵活性,经历发现、总结规律的过程,培养合作意识。

  教学重点:比的基本性质,化简比的方法。

  教学难点:化简比与求比值的区别。

  教学过程:

  一、回顾旧知,导入新课

  1、上节课我们学习了比,说说你对比的理解?怎样求比值?

  2、比和除法、分数的关系?

  二、启发诱导,教学新知

  1、先求比值,在观察这几个比有什么关系?

  3:4 = 6:8= 12:16=

  得出:3:4=6:8=12:16

  2、每两个比之间有着什么样的规律性的变化?

  引导学生得出结论:比的前项和后项都乘或除以相同的数(0除外),比值大小不变,这叫做比的基本性质。

  3、揭示课题:《比的基本性质》。即时互动,教师说一个比,生说一个和它比值一样的比。

  三、运用新知,解决问题

  1、学生理解“化简比的”含义,利用商不变性质,我们可以进行除法的简算。根据分数的基本性质,我们可以把分数约分成最简分数。应用比的基本性质,我们可以把比化成最简单的整数比,即化简比。以4:6为例,教师要说明符合最简单的整数比要符合两个条件:一是比的前项,后项必须是整数,二是这两个整数必须是互质数,也就是这两个整数只有公约数1。

  2、判断:下面哪些比是最简比

  6:9 2:9 4:22 7:13

  为了激发学生的求知欲,我精心设计了这组练习题,不但巩固了刚学的概念,还为学生学习新知识做好了铺垫。

  3、出示例题:(1) “神舟”五号搭载了两面联合国旗,一面长15c,宽10c,另一面长180c,宽120c。

  A学生尝试完成,师巡视指导,要求写出化简过程。

  B师生共同讲评:教师板书过程。问:化简比的结果是什么?

  让学生明确还是一个比。

  (2)把下面各比化成最简单的整数比。

  0.75:2 :

  师:观察0.75:2 这个比,并与例1比较,有什么不同之处,怎样把小数转化成整数,比值不变?引导学生可以乘整十整百的数,变成整数。学生独立完成。问:除此之外还有没有其他的方法?可以把0.75转化成分数,:2怎样化简呢?引导学生想办法去掉分母,前项和后项可以同时乘4。最后出示:,想一想怎样化简?

  教师强调:不管选择哪种方法,最后的结果都是一个最简单的整数比,而不是一个数。

  4、做一做

  ①32:16 0.15:0.3 : :

  说一说:如何把比化成最简单的整数比?

  四、巩固练习,强化新知

  1、判断(多媒体展示:)

  2、选择

  3、填空

  六、课近尾声,知识梳理

  问:这节课我们学习了什么?你学会了什么?

  七、板书设计:

  比的基本性质

  比的前项和后项同时乘或除以相同的数(0除外),比值不变

比的基本性质教案 篇3

  教学目标

  1.利用知识的迁移规律,使学生理解比的基本性质。

  2.通过学生的自主探讨,掌握化简比的方法并会化简比。

  3.初步渗透事物是普遍联系和互相转化的辩证唯物主义观点

  教学重点

  理解并掌握比的基本性质

  课前准备

  课件、实物投影仪

  课时安排:

  1课时

  教学过程

  一、复习引入

  1.复习比和分数、除法之间的关系

  2.提问:比和除法,比和分数之间有那些联系?

  引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流

  3、出示三个分数:3÷4、6÷8、9÷12.变为比,并比较大小

  指名回答小组交流的结果.学生用语言表述比的基本性质。

  交流:比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫比的基本性质。

  教师引导交流:0除外是什么意思?

  学生交流,比的后项、除数是0没有意义。

  二、学习化简比

  1、说明:利用商不变的规律可以进行除法的简算;根据分数的基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

  讨论.你怎样理解“最简单的整数比”这个概念?

  学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数.

  请个别学生举一个最简单的整数比。

  2、把下面各比化成最简单的整数比。(强调化成最简单的整数比—互质)

  14:2154:18

  教师引导交流:怎样把一个比化成最简单的整数比?

  总结方法:用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。或用求比值的方法算,最后结果仍然是个比。

  1÷10:3÷83/5:5/8

  教师引导交流:怎么把分数比化成最简单的整数比?

  总结方法:比的前项后项分别乘它们分母的最小公倍数,就化简成最简整数比。

  1.25:42.7:18

  教师引导交流:怎么把小数比化成最简单的整数比?

  总结方法:先将小数化成整数,再化简成最简单的整数比。

  3、练习:化简比

  60:245/8:7/245/4:0.75

  三、练习

  自主练习5、7、8

  四、小结:

  比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

比的基本性质教案 篇4

  教学内容:

  课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

  教学目的:

  使学生理解比的基本性质,掌握化简比的方法。

  教学过程.:

  一、复习。

  1.除法中的商不变规律是什么?

  2.分数的基本性质是什么?

  3.比与除法有什么关系?

  4.比与分数有什么关系?

  二、新授。

  1.教学比的基本性质。

  我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

  问:在比中有什么样的规律?

  引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

  问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

  2.教学化简比。

  利用比的基本性质,我们可以把比化成最简单的整数比。

  出示例1:把下面各比化成最简单的整数比。

  (1)

  问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)

  (2)

  问:这是一道分数比,怎样才能使它转化成整数比?(引

  导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)

  化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

  (3)

  问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)

  或

  3.小结:

  问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

  三、巩固练习。

  1.完成“做一做”的题目。

  让学生说一说化简的方法。

  2.练习十四第5、7、8题。

  3.练习十四第9题。

  提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)

  四、作业。

  1.练习十四第6、10题

  2.一列火车15小时行驶1200千米。

  (1) 写出行驶的路程和时间的比,并化成最简单的整数比。

  (2) 求出这个比的比值,再说出这个比值的含义是什么?

比的基本性质教案 篇5

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第55页例9、例10和练一练,第56~57页练习九第5~8题。

  教学目标:

  1、学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

  2、教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重点:

  理解比的基本性质。

  教学难点:

  分数比和小数比的化简。

  教具准备:

  多媒体课件

  教学过程:

  1、填空

  一、创设情境,导入新课

  13÷18==∶

  师:除法、分数和比之间有什么联系?

  2、做复习题

  师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

  3、导入课题:

  我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一

  起研究研究。(板书课题:比的基本性质)

  二、学习新课

  1、教学例9比的基本性质。

  (1)学生填表

  (2)体温:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律

  可循?

  (3)师生共同总结比的基本性质

  演示课件“比的基本性质”

  比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变、

  (4)师:你觉得哪些词语比较重要?0除外你怎样理解得?

  2、教学例10应用比的基本性质化简比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是

  最简单的整数比。

  出示:把下面各比化成最简单的整数比

  (1)12:18(2)(3)1.8:0.09

  (1)让学生试做第(1)题

  师:你是怎么做的?6和12、18有着怎样的关系?

  引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是

  互质数。

  (2)化简(2)

  师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化

  成整数比呢?

  (3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就

  可以把分数比转化成整数比,进而化简成最简单的整数比。

  (4)化简(3)1.8:0.09

  师:想一想如何化简小数比呢?

  让学生独立在书上化简,指名板演

  师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

  三、巩固反馈

  1、师:把55页练一练第1题填完整

  集体校对,让学生说说是怎样想的?

  2、完成练一练第2题。

  独立化简,指名板演。

  追问:分数比化简,可以怎样变成整数比?小数比化简呢?

  3、做练习九第5题

  指出:比的前项和后项都乘或除以同一个不是0的数,这两个比的比值相等。

  4、选择

  1、1千米∶20千米=

  (1)1∶20(2)1000∶20(3)5∶1

  2、做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是

  (1)20∶21(2)21∶20(3)7∶10

  5、练习九第7题

  6、完成练习九第8题

  四、课堂小结

  师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小

  数比化成最简单的整数比?

  板书设计:

  略

比的基本性质教案 篇6

  教学目标:

  1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  教学重点:

  1、理解比的基本性质。

  2、运用比的基本性质进行化简比。

  一、探究新知

  (一)比的基本性质

  1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)

  (1)4人小组交流(2)全班交流

  (3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

  (4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

  2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

  3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?

  4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

  5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

  (二)化简比---完成练习题(后附)

  1、小组交流

  2、全班交流

  小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

  结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

  二、巩固练习

  1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。

  2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是。

  3、拓展练习

  3:8=(3+6):(8+)

  (让学生分小组讨论方法)

  三、课堂总结

  这节课有哪些收获?师生共同总结。

  年班姓名

  比的基本性质小研究

  你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

  方法一

  方法二

  方法三

  方法四

  我的发现:

  聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

  序号

  比

  我的方法

  (写出过程)

  1

  14:21

  2

  36:15

  3

  1/6:2/9

  4

  2/3:3/4

  5

  1.25:2

  6

  5.6:4.2

  我的发现:

比的基本性质教案 篇7

  教学内容

  比的基本性质

  教材第50、第51页的内容及练习十一的第4~8题。

  教学目标

  1、根据除法中商不变的规律和分数的.基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

  2、通过学生的自主探讨,掌握化简比的方法并会化简比。

  3、初步渗透事物是普遍联系的辩证唯物主义观点。

  重点难点

  重点:理解比的基本性质,推导化简比的方法,正确化简比。

  难点:正确化简比。

  教具学具

  练习题投影片。

  教学过程

  一 导入

  1、比与分数、除法的关系。

  老师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的联系,哪位同学愿意说说比和分数、除法之间有什么联系呢?

  如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

  2、复习分数的基本性质和商不变的规律。

  老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

  (指名学生发言)

  二 教学实施

  1、猜想。

  老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

  汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

  引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、验证。

  以小组为单位,讨论、验证一下刚才的猜想是否正确。

  学生汇报。

  3、小结。

  经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

  板书课题:比的基本性质

  4、化简比。

  老师:应用比的基本性质,我们可以把比化成最简单的整数比。

  出示例1(1)。

  老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

  学生反复读几遍。

  提问:你怎样理解“最简单的整数比”这个概念?

  学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

  15∶10=(15÷5)∶(10÷5)=3∶2

  180∶120=(180÷60)∶(120÷60)=3∶2

  出示例1(2)。

  学生尝试把下面各比化成最简单的整数比。

  0、75∶2=(0、75×100)∶(2×100)=75∶200=3∶8或(0、75×4)∶(2×4)=3∶8

  老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

  5、反馈练习。

  (1)完成教材第51页的“做一做”,集体订正。

  (2)完成教材第53页练习十一的第4题。

  提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

  (3)完成教材第53页练习十一的第5题。

  (4)完成教材第53页练习十一的第6~8题。

  让学生说明理由,注意思维的逻辑性和语言的条理性。

  三 课堂作业新设计

  1、把下面各比化成最简单的整数比。

  四 思维训练参考答案

  课堂作业新设计

  1、6∶7 3∶1 3∶8 5∶6 7∶5 4∶1 4∶5 10∶1

  2、 (1)4∶5 (2)3∶2 (3)7∶4 (4)5∶2

  思维训练

  板书设计

  比的基本性质

  比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

  化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简

  单的整数比,叫做化简比。

  备课参考教材与学情分析

  比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想—验证—应用,让学生理解比的基本性质,应用性质化简比。

  课堂设计说明

  1、运用转化的思想,类推出比的基本性质。

  我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

  2、教学中强调观察得出运用比的基本性质来化简比。

  根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

比的基本性质教案 篇8

  教学目标

  1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

  2.能够正确地运用比的基本性质把比化成最简单的整数比。

  3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重点和难点

  1.理解比的基本性质。

  2.正确运用比的基本性质把比化成最简单的整数比。

  教学过程设计

  (一)复习准备

  1.复习商不变的性质。

  (1)谁能很快地直接说出 4125的商?

  (2)说一说,你是怎样想的?(4125=(414)(254)=164100=16.4)

  (3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

  2.复习分数的基本性质。

  (1)把下面各分数约分:

  (2)通分练习:

  (3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

  3.求比值的练习。

  8∶4= 48∶12= 16∶8=

  24∶18= 40∶16= 15∶5=

  (二)学习新课

  1.导入新课。

  我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

  2.概括比的基本性质。

  (1)创设情境。

  2∶4根据比与除法的关系可以写成2∶4=24,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=24=(22)∶(42)=48=4∶8)

  (2)概括比的基本性质。

  ①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

  ②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  强调同时、相同、0除外这几个重点的关键词语。

  (3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

  3.应用比的基本性质化简比。

  (1)引出比的基本性质的作用。

  例 一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

  请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

  讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

  (2)解释什么是最简单的整数比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  (3)化简比。

  应用比的基本性质可以把比化成最简单的整数比。

  例1 把下面各比化成最简单的整数比。

  这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

  讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

  这个比的前、后项是什么数?(分数)

  18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

  讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

  请把1.25∶2化成最简单的整数比。

  讨论:如何把小数比化简成最简单的整数比?

  ④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

  (4)区别化简比和求比值。

  ①出示练习题:化简下面各比,并求出比值。

  填表之后用投影进行订正。

  讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

  比值就是求商,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

  (三)巩固反馈

  1.完成第57页的做一做。

  把下面各比化成最简单的整数比。

  请学生在练习本上独立完成,用投影仪集体订正。

  2.完成第59页第6题。

  声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

  578∶340=17∶10

  3.填空:(口答)

  (1)85∶51=(85( ))∶(51( ))=5∶3

  (四)课堂总结

  通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  (五)布置作业

  第58页第5题,第59页第7,8题。

  课堂教学设计说明

  复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

  对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

  最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。