高中数学《指数函数及其性质》说课稿
以下是人教版高中数学《指数函数及其性质》说课稿,仅供参考。
一、指数函数及其性质教学设计说明
新课标指出: 学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础对教学设计加以说明。
数学本质:
探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过分类讨论,通过研究两个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。引导学生探究出指数函数的一般性质,从而对指数函数进行较为系统的研究。
二、教材的地位和作用:
本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1 .2节的内容,研究指数函数的定义,图像及性质。是在学生已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习的一个重要的基本初等函数。它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数 的基础。因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
三、教学目标分析:
根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。本节课的难点是指数函数图像和性质的发现过程。
《指数函数》教学反思(精选2篇)
《指数函数》教学反思 篇1
“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。
指数函数(精选15篇)
指数函数 篇1
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象.
2. 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教学建议
教材分析
(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是.
指数函数(精选14篇)
指数函数 篇1
课题:§2.1及其性质
一、教学三维目标 1、双基:理解指数函数的概念、掌握指数函数的图象和性质。 2、能力:培养学生自主学习、综合归纳、数形结合的能力。 3、德育:使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观,促进素质全面发展
二、教学方法: 在新课程理念的指导下,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)课堂讨论法:学生通过讨论得到主动探索。 (2)探究式学习法:学生通过分析、探索、得出指数函数的定义。 (3)自主性学习法:通过实验画出函数图象、观察图象得其性质。在对比中积极思维,主动的进行探究,学生通过分析、探索、得出指数函数的定义。通过实验画出函数图象、观察图象得其性质,本节课注重在新课程理念的指导下培养学生的主动探究能力。
三、教学重点、难点: 重点:理解指数函数的定义,掌握指数函数的图象性质难点:指数函数的图象和性质关键:利用学生熟悉的描点法画出指数函数的图象
四、情感态度与价值观: 1.使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观。 2.在民主、和谐的教学气氛中,让学生成为课堂的主体,达到师生的情感交流。
五、教学过程:
教 学 过 程
探索 过程
教 师 导 航
学 生 探 究
与设计意图
复习 提问 某中细胞分裂时,由1个,分裂一次成2个,分裂二次成4个,分裂三次成8个,分裂四次成16个,…… 问:①1个这样的细胞分裂5次后得到的细胞个数为32
指数函数
课题:§2.1及其性质
一、教学三维目标 1、双基:理解指数函数的概念、掌握指数函数的图象和性质。 2、能力:培养学生自主学习、综合归纳、数形结合的能力。 3、德育:使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观,促进素质全面发展
二、教学方法: 在新课程理念的指导下,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)课堂讨论法:学生通过讨论得到主动探索。 (2)探究式学习法:学生通过分析、探索、得出指数函数的定义。 (3)自主性学习法:通过实验画出函数图象、观察图象得其性质。在对比中积极思维,主动的进行探究,学生通过分析、探索、得出指数函数的定义。通过实验画出函数图象、观察图象得其性质,本节课注重在新课程理念的指导下培养学生的主动探究能力。
三、教学重点、难点: 重点:理解指数函数的定义,掌握指数函数的图象性质难点:指数函数的图象和性质关键:利用学生熟悉的描点法画出指数函数的图象
四、情感态度与价值观: 1.使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观。 2.在民主、和谐的教学气氛中,让学生成为课堂的主体,达到师生的情感交流。
五、教学过程:
教 学 过 程
探索 过程教 师 导 航
学 生 探 究
与设计意图
复习 提问 某中细胞分裂时,由1个,分裂一次成2个,分裂二次成4个,分裂三次成8个,分裂四次成16个,…… 问:①1个这样的细胞分裂5次后得到的细胞个数为32《指数函数》(第一课时)教学反思
“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。