函数的性质教案

时间:2025-04-05

数学教案-指数函数与对数函数的性质及其应用

      

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程 

一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

 

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集r

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集r

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1, y<0

0<a<1

当x>0, 0<y<1

当x>1, y<0

当x<0,y>1

当0<x<1, y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

          y

    y=(1/2)x      y=2x

              (0,1)

查看全文

第五册指数函数与对数函数的性质及其应用

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程 

一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

 

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集R

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集R

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1, y<0

0<a<1

当x>0, 0<y<1

当x>1, y<0

当x<0,y>1

当0<x<1, y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

          Y

    y=(1/2)x      y=2x

              (0,1)

查看全文

指数函数与对数函数的性质及其应用 —— 初中数学第五册教案


      

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程 

一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

 

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集R

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集R

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1, y<0

0<a<1

当x>0, 0<y<1

当x>1, y<0

当x<0,y>1

当0<x<1, y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

          Y

    y=(1/2)x      y=2x

              (0,1)

查看全文

下学期 4.10 正切函数的图象和性质(通用2篇)

下学期 4.10 正切函数的图象和性质 篇1

  4.10 正切函数的图象和性质

  第二课时

  (一)教学具准备

  投影仪

  (二)教学目标 

  运用正切函数图像及性质解决问题.

  (三)教学过程 

  1.设置情境

  本节课,我们将综合应用正切函数的性质,讨论泛正切函数的性质.

  2.探索研究

  (1)复习引入

  师:上节课我们学习了正切函数的作图及性质,下面请同学们复述一下正切函数 的主要性质

  生:正切函数 ,定义域为 ;值域为 ;周期为 ;单调递增区间 , .

  (2)例题分析

  【例1】判断下列函数的奇偶性:

  (1) ; (2) ;

  分析:根据函数的奇偶性定义及负角的诱导公式进行判断.

  解:(1)∵ 的定义域为 关于原点对称.

  ∴ 为偶函数

  (2)∵ 的定义域为 关于原点对称,且 且 ,

  ∴ 即不是奇函数又不是偶函数.

  说明:函数具有奇、偶性的必要条件之一是定义域关于原点对称,故难证 或 成立之前,要先判断定义域是否关于原点对称.

  【例2】求下列函数的单调区间:

  (1) ; (2) .

  分析:利用复合函数的单调性求解.

  解:(1)令 ,则

  ∵ 为增函数, 在 , 上单调递增,

  ∴ 在 ,即 上单调递增.

  (2)令 ,则

  ∵ 为减函数, 在 上单调递增,

  ∴ 在 上单调递减,即 在 上单调递减.

  【例3】求下列函数的周期:

  (1) (2) .

  分析:利用周期函数定义及正切函数最小正周期为 来解.

  解:(1)

  ∴周期

  (2)

  ∴周期

  师:从上面两例,你能得到函数 的周期吗?

查看全文

下学期 4.9函数y=Asin的图象(精选2篇)

下学期 4.9函数y=Asin的图象 篇1

  4.9  函数 的图像

  第一课时

  (一)教学具准备

  直尺、投影仪.

  (二)教学目标 

  掌握由

  (三)教学过程 

  1.设置情境

  函数 ( 、 、 是常数)广泛应用于物理和工程技术上、例如,物体作简谐振动时,位移 与时间 的关系,交流电中电流强度 与时间 的关系等,都可用这类函数来表示.我们知道,图像是函数的最直观的模型,如何作出这类函数的图像呢?下面我们先从函数 与 的简图的作法学起.(板书课题)—函数 与 的图像.

  2.探索研究

  (可借助多媒体)

  (1)函数 与 的图像的联系

  【例1】画出函数 及 ( )的简图.

  解:函数 及 的周期均为 ,我们先作 上的简图.

  列表并描点作图(图1)

  0

  0

  1

  0

  -1

  0

  0

  2

  0

  -2

  0

  0

  0

  0

  利用这两个函数的周期性,我们可以把它们在 上的简图向左、右分别扩展,从而得到它们的简图.

  的图像与 的图像之间有何联系?请一位同学说出 的值域和最值.

  生: 的图像可以看做是把 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到的. , 的值域是 ,最大值是2,最小值是-2.

  师: 的图像与 的图像有何联系?并请你说出 的值域和最值.

  生: 的图像可以看做是把 的图像上所有点的纵坐标缩短到原来的 倍,(横坐标不变)而得到的, , 的值域是 ,最大值是 ,最小值是 .

  师:由例1中 、 与 的图像的联系,我们来探求函数 ( 且 )的图像与 的图像之间的联系.

查看全文

第六册函数(通用3篇)

第六册函数 篇1

  教学目的:

  1.了解常量与变量的意义,能分清实例中的常量与变量;

  2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式;

  3.培养学生观察、分析、抽象、概括的能力;

  4.对学生进行相互联系、绝对与相对、运动变化的辩证唯物主义观点的教育和爱国、爱党、爱人民的教育。

  教学直点:

  函数概念的形成过程。

  教学难点 :

  理解函数概念。

  教具:

  多媒体。

  教学过程 :

  一、创设情境

  首先请同学们看一组境头:(微机播放今夏抗洪片段)唤起学生对今夏洪水的回忆,对学生渗透爱国、爱党、爱人民的教育。

  二、形成概念

  (一)变量与常量概念的形成过程

  1.举例、归纳

  引例1:沙市今夏7、8两个月的水位图(微机示图)

  学生观察水位随时间变化的情况,(微机示意)引出“变量”。

  引例2:汽车在公路上匀速行驶(微机示意)

  学生观察汽车匀速行驶的过程,加深对变量的认

  识,引出“常量”。

  设问:一个量变化,具体地说是它的什么在变?什么不变呢?(微机显示:下方汽车匀速行驶,上方S的值随t的值变化而变化。)

  引导学生观察发现:是量的数值变与不变。

  归纳变量与常量的定义并板书。

  2.剖析概念

  常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取植情况。

  3.巩固概念

  练习一:

  1.向平静的湖面投一石子,便会形成以落水点为圆心的一系列同心圆(微机示意)。①在这个变化过程中,有哪些变量?②若面积用S,半径用R表示,则S和R的关系是什么?;π是常量还是变量?③若周长用C,半径用R表示,C与R的关系式是什么?

查看全文
目录