小学六年级数学《圆柱的体积》教案范文

2023-12-10

小学六年级数学《圆柱的体积》教案范文 篇1

  学情分析:

  根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学目标:

  1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

  2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

  3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学重点:

  圆柱体体积的计算

  教学难点:

  圆柱体体积公式的推导

  教学用具:

  圆柱体学具、

  教学过程:

  一、复习引新

  1.求下面各圆的面积(回答)。

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  要求说出解题思路。

  2.提问:什么叫体积?常用的体积单位有哪些?

  3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

  二、探索新知

  1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

  2、公式推导。(有条件的可分小组进行)

  (1)请同学指出圆柱体的底面积和高。

  (2)回顾圆面积公式的推导。(切拼转化)

  3、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  4、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  5、教师演示。

  把圆柱拼成了一个近似的长方体。

  6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的.长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  (1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  (2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  (3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积 底面积 高

  圆柱体积 底面积 高

  8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  9、用字母如何表示。

  V=sh

  10、小结。

  圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

  11、教学算一算

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

  12、教学“试一试”

  小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

  三、巩固练习

  课后“练一练”里的练习题。

  四、课堂小结

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

小学六年级数学《圆柱的体积》教案范文 篇2

  一、说教材

  1.教学内容

  本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

  2.本节课在教材中所处的地位和作用

  《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

  3.教材的重点和难点

  由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

  4.教学目标

  (1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。

  (2)初步建立空间观念和逻辑推理能力。

  (3)知道知识间是可以互相转化的。

  二、说教法

  从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:

  1.直观演示,操作发现

  教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

  2.巧设疑问,体现两“主”

  教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

  3.运用迁移,深化提高

  运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

  三、说学法

  课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

  本节课的教学,使学生掌握一些基本的学习方法

  1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。

  2.学会利用旧知转化成新知,解决新问题的能力。

  3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

  四、说教学过程

  对本节课的教学,我们设计了以下几个环节。

  (一)复习旧知识,为引入新知识作准备

  1.求下面各圆的面积(口算),单位为厘米

  (1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。

  2.什么叫做体积?怎样计算长方体的体积?

  (二)导入新课,隐射教学目标

  1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入的学习状态。

  2.展示学习目标,学生认读目标

  教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。

  (三)导入新课,实施教学目标

  1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的面积公式的推导过程,教师出示投影,帮助学生思考。

  2.演示操作,揭示新知。

  引导学生观察,沿着圆柱底面把圆柱切开,可以得到大小相等的16快。演示给学生看以后,在让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体计算公式的推动过程。并板书:圆柱体的体积=底面积•高

  引导学生用字母表示出来,最后让学生看书质疑。

  这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

  关于难点的突破,我们主要从以下几个方面着手:

  (1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

  (2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

  (3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

  (4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

  3.运用。

  出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。

  在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

  (四)巩固练习,检验目标

  1.填表:集体订正后,教师提问,这道题已知圆柱的底面积和高,求它体积,如果不知道圆柱的底面积,那还必须知道什么条件才能求出它的体积?该怎样求?

  2.完成练习六第2题。

  通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

  3.变式练习:已知圆柱的体积、底面积,求圆柱的高。

  这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

  4.动手实践:让学生测量自带的圆柱体。

  教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

  这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

  (五)总结全课,深化教学目标

  结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。

小学六年级数学《圆柱的体积》教案范文 篇3

  教学内容:

  人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。

  教学目标:

  1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

  2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

  3、探索和解决问题,体验转化及极限的思想方法。

  4学会由未知向已知转化的学习方法。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:掌握圆柱体积公式的推导过程。

  教学方法:尝试指导法

  学法指导:猜想→讨论→操作→概括→尝试→辨析→总结

  教学用具:圆柱的体积公式演示课件

  学习用具:准备推导圆柱体积计算公式所用的学具。

  教学过程:

  一、激疑引入

  同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。

  二、探究新知

  1、猜想

  现在该怎样来计算圆柱的.体积呢?不妨大胆猜想一下好吗?

  2、表扬鼓励,实践迁移

  (1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!

  让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)

  (2)操作:学生操作学具,切割拼合。

  (3)感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。

  (4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  (5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?

  (6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】

  (7)概括总结

  ①让学生试着总结公式;

  ②老师在学生总结的基础上用课件出示

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱体的体积=底面积×高

  用字母表示:v=sh

  3、运用新知,尝试解答

  [做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  (1)尝试:让学生理解题意,自己尝试解答。

  (2)展示:根据v=sh可得:75×90=6750(cm3)

  (3)讲评并强调:计算体积时结果应用体积单位。

  (4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?

  让学生独立思考,写出计算公式,再相互交流。

  得到:v=πr2h

  [完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?

  1、教师引导学生:要回答这个问题,先要计算出杯子的容积。

  2学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。

  三、巩固练习

  1、完成下表。

  2一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?

  四、全课小结

  同学们,今天我们学习了什么知识?你还有什么不懂的问题?

  五、布置作业(练习三第2、3题)

  板书设计

  圆柱的体积

  圆柱转化近似长方体

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱的体积=底面积×高

  V柱=sh

  V柱=πr2h

小学六年级数学《圆柱的体积》教案范文 篇4

  教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。) 

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?  

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

  学生反馈自学情况: 

  v=sh                                                                                                                                                                                                   (设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)     

  三、巩固发展

  1、课件出示例5,学生独立完成。

  指名说说这样列式的依据是什么。

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  2、巩固反馈

  填表(单位:厘米)

  底面积  高 体积

  6      3

  0.5    8

  8      2

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)

  3、完成第9页的“试一试”和练一练”中的两道题。

  (“练一练”只列式,不计算)

  集体订正,说一说圆柱体的体积还可以怎样算?

  (设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

  (设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)

  5、拓展练习

  (1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

  (2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

  (设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)              

  四、全课小结:谈谈这节课你有哪些收获。

  板书设计:

  圆柱的体积

  长方体的体积=底面积高

  圆柱的体积  =底面积高

  v   =   s    h

  或v=πr²h

  设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:

  1、合作探究学习为主要的学习方式。

  2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

  3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

  教具准备:圆柱的体积公式演示课件  体积不同的圆柱体  直尺  细绳  计算器。

小学六年级数学《圆柱的体积》教案范文 篇5

  [教学过程] 

  一、创设情境  设疑导入

  1、复习铺垫。

  (1)求各园的面积:

  a、半径3厘米   b、直径为4厘米    c、周长为62.8厘米

  (2)什么叫体积?长方体的体积怎样计算?

  2、导入新课。

  1、出示(光盘资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。

  激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?

  2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)   

  二、自主探究  学习新知

  (一)探究推导圆柱的体积计算公式 

  1 、教师演示(远程资源动画演示“圆柱体的体积”):

  (1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?

  (2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?

  (3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

  2、学生利用学具独立操作 (教师巡视、指导操作有困难的学生) ,思考并讨论。

  (1)    圆柱体切开后可以拼成一个什么图形?(近似的长方体)

  (2) 通过刚才的实验你发现了什么?① 拼成的近似长方体的体积与原来的圆柱体积有什么关系?② 拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③ 拼成的近似长方体的高与原来的圆柱的高有什么关系?   (3)学生汇报交流。

  3、让学生根据圆的面积公式推导过程,进行猜想。

  如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?

  4、推导圆柱的体积公式(利用远程资源动画演示推导过程) 

  (1)学生分组讨论、汇报:圆柱体的体积怎样计算?

  (2)用字母表示圆柱的体积公式。学生口述后,教师板书。

  因为 长方体的体积=底面积高

  ↓           ↓     ↓

  所以 圆柱的体积 =底面积高

  ↓           ↓     ↓

  v     =    s     h

  5、引导学生进一步讨论后交流。

  (1)要求圆柱的体积必须知道哪些条件?

  (2)如果分别知道圆柱的底面半径、底面直径、底面周长,又怎样求圆柱的体积?    

  (二)、练一练   

  1、学生完成20页的[做一做]。

  2、让学生想一想:如果已知圆柱底面的半径r和高h,怎样求圆柱的体积?(请学生自学并填写第44页第一自然段的空白部分)

  (三)教学例6

  1、引导学生默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?

  2、指名说解题思路,讨论并归纳解题方法。

  3、学生独立按讨论的方法完成例6。

  4、教师评讲、总结方法。

  三、练习巩固  应用拓展

  (一)巩固练习

  1、完成第21页的“练习三”第1、2题。(指名板演,其余同学在作业本上练习,完成后及时反馈练习中出现的错误,及时加以评讲。)

  2、学生判断。

  (1)长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。(      )

  (2)圆柱体的底面积和体积成正比例。(       )

  (3)圆柱的体积和容积实际是一样的。(       )

  (二)、拓展训练(课件出示拓展延伸题,学生课外练习)

  一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少? 

小学六年级数学《圆柱的体积》教案范文 篇6

  一、教学内容

  教材第25页 例5、例6

  二、学习目标

  1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

  2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

  3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

  三、教学重难点

  1、重点:理解、掌握圆柱的体积公式的推导过程。

  2、难点:圆柱体积公式的推导过程。

  四、教学准备

  多媒体课件

  五、教学过程

  创设情境、生成问题

  师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

  生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

  师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

  板书:圆柱的体积(课件)

  探索交流、解决问题

  1、猜想

  师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

  (生自由猜想,并讨论交流)师适当板书记录

  刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

  (课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

  师:第一组图片中的两个圆柱有什么特征?

  生:底面一样,但是高度却不一样,体积也不一样

  师:第二组图片中的两个圆柱有什么特征?

  生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

  师:那么通过刚才两个同学的回答,你能得出什么结论呢?

  小结:圆柱的体积的大小取决于圆柱底面的大小和高度的`大小

  师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

  生猜想......

  师:我们的猜想对不对,还是要用实验去证明

  2、推导圆柱体积计算公式

  师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

  生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

  师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

  (课件出示作业纸)对应和公式推导

  选取小组的作业纸进行展示,有其他同学进行评定

  课件演示结果

  小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

  另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

  巩固应用、内化提高

  2、

  3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

  8cm

  8cm

  498ml

  498ml

  10cm

  10cm

  回顾整理、反思提升

  今天这节课你有什么新的收获说出来和大家一起分享吧!

小学六年级数学《圆柱的体积》教案范文 篇7

  4、教学例题

  (1)出示例题:下面这个杯子能不能装下这袋牛奶?

  并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例题。

  5、比较一下例题有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是第一例题已给出底面积,可直接应用公式计算;第二例题只知道底面直径,要先求底面积,再求体积.)

  三、巩固练习

  1、做第21页练习三的第1~2题.

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、布置作业

  练习三第3、4题。

小学六年级数学《圆柱的体积》教案范文 篇8

  《圆柱的体积》教学反思

  《圆柱的体积》要求让学生经历“类比猜想—验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。教学一开始,我就先让学生回忆圆的面积公式我们是如何得到的,有的同学马上想到用转化的方法,接着我再提出:那么你认为圆柱的体积公式该如何推导呢?学生自然而然就想到也用转化的方法,然后我再让学生分成四人小组活动,充分利用学具盒的学具讨论如何得到圆柱的体积公式。最后,学生通过积极的讨论、交流后,很自然的想到把圆柱转化成长方体,并根据长方体与圆柱的关系来推导出圆柱的体积公式。这样运用原有的经验让学生去解答,充分激发了学生学习的潜能,大大调动了学生的学习积极性,学生学得愉快,我也教得轻松,真是事半功倍。

  圆柱的体积教学反思

  由于我课前认真研读教材,把握教学的重点和难点,精心设制教学过程和教学活动,上课时我做到胸有成竹。通过这节课的教学我感到自身的教学水平和驾驭课堂的能力得到了提升,从同事评课反映,我认为这节课的教学是比较成功的。这节课教学方法主要体现在我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。    我深知教学无止境,没有最好只有更好,我要从成功中找不足。    综上所述, 首先,交流预习作业。在预习作业里我在备课时就设制了两个知识点,让学生课前完成,一个知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,另一个知识点是要求学生预习教材回答两个问题,两个问题是与这节课教学密切相关的内容,在教材上都是能找到答案的。在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。

  其次,交流猜想和探索如何验证。我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份 ,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。

  再次,课件展示、构建新知。让学生观看课件:课件2是把刚才实际操作的过程再次演示和呈现,课件3和课件4是把圆柱的底面平均分成32份、64份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。为了拓展学生的知识面,我此时还提出了转化后的长方体底面的长和宽分别与圆柱体的底面周长和半径有什么关系,这在教材和参考教案都没有的知识点。学生的思维得到激发,学生勇于回答,学生回答错了,我既没有批评学生,也没有急不可耐给出答案,而是让学生再想,后来还是有学生能正确回答出来了。我想如果不给学生思考的时机直接给出答案,这样与学生发现问题的答案所产生的效果就截然不同了。

  推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。

  最后,分层练习,发散思维。在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了三道练习题。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。在练习时我不断巡视关注学生练习情况,对出现的错误解答方法我不回避,在展示学生练习时既展示成功的也展示错误的。学生练习出现错误是正常现象,在讨论和评讲练习时是很好的资源,要充分的利用。

  不足之处:

  整个课堂教学过程中,师生的有效、良性互动还达不到预期目标,有一部分学生没有具备良好作业习惯,灵活运用知识解决问题的能力还欠缺。

  通过这节课,我思量交流预习作业能不能与全课的教学活动整合在一起,在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。建构高效的课堂教学范式在我校已经试验一个月了,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。

  圆柱体积教学反思

  精心研究教材是用好教材的基础 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

  学生获得发展是用好教材的标准,有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

  今天教学了圆柱的体积,教学时由于学生手头上早有学具——圆柱体积的演示器,因而学生很容易想到把圆柱转化成长方体的方法,困难之处是学生在语言叙述时有些困难,比如沿着什么剪,平分成无数个什么图形……(在形成方法后,让学生互相说了两遍)。

  在实际教学时还是按部就班,先复习了长方体的体积计算方法,再由例4图介入——先出示前面的长方体和正方体,让生知道统一的算法后,再出示圆柱让生猜测之间的联系,继而让学生设法验证——

  但是此处教材设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方体计算体积吗?”可是学生早以有了圆柱体的演示学具,显得有些多余(此是教学的一大困惑)。实际教学时还是由圆过渡到圆柱与长方体的联系上来,让学生讨论方法及之间的联系。我又借助了flash课件,辅助认识平均分成更多的份数越来越接近长方体……

  有一点,就是学生学具上其中的一块又被平均分成了两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的示意图并没有这样的过程(以前的教材是和学具一样的)。

  我认为教材的方法是很可取的,符合极限思想,因为就是不再平均切分一块后移接,如果我们均分的份数无限多时,拼成的图形也一定是一个长方体,何必多此一举呢?

  另外,我在网上的教案中看到了这样的一个统一公式:直柱体的体积=底面积高,觉得有些道理,教学时使用了,让学生分别说出三种立体图形的体积公式后,进行发现,得出此点(顺水推舟),但是接下来还进行了一些提高性的应用练习,出示了三个直柱体(一个是直三棱柱,一个是直六棱柱,一个是底面是梯形的直柱体)告之底面积和高试它们的体积。不知这一教学环节是否可取?

小学六年级数学《圆柱的体积》教案范文 篇9

  圆柱的体积

  教学内容:p19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  1、渗透转化思想,培养学生的自主探索意识。

  教学重点:掌握圆柱体积的计算公式。

  教学难点:圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)

  2、教学补充例题

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题: 

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①v=sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  v=sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  v=sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  v=sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正.

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πr2h)

  4、教学例6

  (1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

  三、巩固练习

  1、做第21页练习三的第1题.

  2、练习三的第2题.

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、布置作业

  练习三第3、4题。

  板书:

  圆柱的体积=底面积×高     v=sh或v=πr2h

  例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

小学六年级数学《圆柱的体积》教案范文 篇10

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  了达到目标,下面请大家认真地看书。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是厘米,体积是立方厘米。.

  下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计

  课题三:圆柱的体积

  圆柱的体积=底面积高

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

小学六年级数学《圆柱的体积》教案范文 篇11

  【教材简析】:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  【教学内容】:

  p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

  【教学目标】:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  【教学重点】:掌握圆柱体积的计算公式。

  【教学难点】:圆柱体积的计算公式的推导。

  【教学过程】:

  第一课时          本册总课时:12课时

  一、复习

  1、长方体的体积公式是什么?(长方体的体积=长宽高,长方体和正方体体积的统一公式“底面积高”,即长方体的体积=底面积高)

  2、什么叫做物体的体积?你会计算下面那些图形的体积?

  3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

  (2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

  (3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

  (3)通过观察,使学生明确:

  长方体的底面积等于圆柱的底面积,

  长方体的高就是圆柱的高。

  长方体的体积=底面积高,

  所以圆柱的体积=底面积高,

  v =  s   h

  圆柱的体积计算公式是:

  v=s h

  2、课堂练习:

  (1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)让学生解答和板算,最后师生共同完成.

  解:v=sh

  =7590

  =675(立方厘米)

  答:它的体积是675立方厘米。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的vπ r²h

  4.作业:

小学六年级数学《圆柱的体积》教案范文 篇12

  教学内容:本内容是六年级下册第8页至第9页。

  教材分析:

  本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

  学生分析:

  学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过 “类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

  学习目标:

  1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

  2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

  3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

  教学过程:

  出示教学情境:一个杯子能装多少水呢?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

  (设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

  出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

  (设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

  探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

  大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

  验证:能否将圆柱转化为学过的立体图形?

  让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

  思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

  (设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

  用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

  学生讨论交流:

  1、把圆柱拼成长方体后,什么变了,什么没变?

  2、拼成的长方体与圆柱之间有什么联系?

  3、通过观察得到什么结论?

  得到:圆柱的体积=底面积×高

  V=Sh=πr2h

  (设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

  练习设计:

  1、计算下面各圆柱的体积。

  (1)S=60cm2 h=4cm (2)r=1cm h=5cm (3)d=6cm h=10cm

  2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?

  (设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

  2、试一试:

  (1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

  (2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

  (设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。) 4、拓展练习:

  (1)填表:

  填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

  (设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

  (2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

  (设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

  课堂小结:谈谈这节课你有哪些收获?

  (设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

  教学反思:

  本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

  情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

小学六年级数学《圆柱的体积》教案范文 篇13

  教学重点:

  理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

  教学准点:

  掌握圆柱体积公式的推导过程。

  教学准备:

  圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

  教学过程:

  一、情境激趣导入新课

  1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)

  二、自主探究, 学习新知

  (一)设疑

  1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

  2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

  3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

  师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式

  (二)猜想

  1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

  2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

  (三)验证

  1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

  2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

  3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

  4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

  5、通过上面的观察小组讨论:

  (1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

  (2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

  (3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?

  (4) 你认为圆柱的体积可以怎样计算?

  (生汇报交流,师根据学生讲述适时板书。)

  小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。

  6、同桌相互说说圆柱体积的推导过程。

  7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

  8、求圆柱体积要具备什么条件?

  9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

  小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

  10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

  11、练一练:列式计算求下列各圆柱体的体积。

  (1)底面半径2cm,高5cm。

  (2)底面直径6dm,高1m。

  (3)底面周长6.28m,高4m。

  三、练习巩固拓展提升

  1、判断正误:

  (1)等底等高的圆柱体和长方体体积相等。………………

  (2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。

  (3)圆柱的底面积越大,它的体积就越大。

  (4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。

  2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?

  3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的`圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?

  四、全课总结自我评价

  通过这节课的学习你有什么感受和收获?

  教学反思:

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

  从本节课教学目标的达成来看,较好地体现了以下几方面:

  一、创设生活情境,体现数学生活化。

  《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。

  二、引导学生经历知识探究的全过程。

  动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。

  三、注重学法指导和数学思想方法的渗透。

  “学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

小学六年级数学《圆柱的体积》教案范文 篇14

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (学生互相讨论后汇报,教师设疑)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件? 

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况: 

  v=sh  

  三、巩固发展 

  1、课件出示例4,学生独立完成。

  指名说说这样列式的依据是什么。

  2、巩固反馈

  3、完成第9页的“试一试”和练一练”中的两道题。

  (“练一练”只列式,不计算)

  集体订正,说一说圆柱体的体积还可以怎样算?

  4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

  5、拓展练习

  (1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

  (2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?               

  四、全课小结:

  谈谈这节课你有哪些收获。

  教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:圆柱体积计算公式的推导过程

小学六年级数学《圆柱的体积》教案范文 篇15

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

小学六年级数学《圆柱的体积》教案范文 篇16

  各位领导、老师、同学们:大家好,今天我讲课的题目是《圆柱的体积》

  圆柱的体积是本单元的教学重点。在此之前,学生已经学过了圆面积公式的推导,对转化的思想方法和“等积变形”已有所了解;长方体、正方体的体积公式是本节课的旧知停靠点;而这节课的顺利学习将为以后圆锥体积的学习铺平道路。从能力培养方面来看,本节课的内容有利于发展学生的空间观念,培养学生的逻辑推理能力,在公式推导过程中,还可以培养学生猜想、类推、对应的数学思想和方法。另外,就情感的角度而言,通过学生体验探索数学奥秘的过程,可以培养学生对数学学习的兴趣和探索精神。

  由此,预设以下教学目标:

  1、使学生经历用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式的过程,使学生能总结和理解圆柱的体积公式,能够运用公式正确的计算圆柱的体积。

  2、培养学生观察、猜测、分析、比较、综合的学习思考方法。

  3、渗透转化、等积变形、极限的数学思想。

  4、通过学生体验圆柱体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感;

  圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程做为本节课的教学重点;而学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,在圆柱体积公式的推导过程中,要用到等积变形、对应、以及逻辑推理的知识,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学难点。

  本节课要采用的教学方法有:演示法、提问法等,在学习过程中要用到的方法有:观察法、思考法等。

  教学用具:圆柱模型,装水的杯子等

  这节课主要有五大环节

  一、实验引入

  师:我们来观察一个现象,把小圆柱放入水里,看看有什么变化

  生:变了变了,水面上升了.

  师:水面为什么上升

  生: 小圆柱浸没在水中,将水挤压上升,求小圆柱的体积也就是求上升水面的体积,即圆柱体积.

  师:你们想不想知道圆柱体积怎样计算

  生齐答:想.

  师:今天我们就一起来研究圆柱体积的计算方法.(板书:圆柱的体积)

  二、探究新知

  师:出示课件,根据课件演示逐步推导出圆柱体的体积计算方法

  长方体的体积=底面积高

  | |

  圆柱体的体积=底面积高

  v = s h

  三、,运用新知,解决问题

  出示例1:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少

  师:咱们大家理解自己推导的圆柱体的体积公式了吗 下面我们

  50210=10500(cm3)

  答:圆柱形钢材体积为10500cm3

  四、巩固运用

  1,填表:请同学看屏幕回答下面问题,谁想好了谁就站起来说.

  底面积(m2) 15 6.4 0.05

  高(m) 3 4 2

  圆柱体积(m3)

  五、总结评价

  师:今天我们学习了圆柱体积的推导方法及计算公式.

  板书设计:

  圆柱的体积

  v= s h

  例4:一根圆柱形钢材,底面积是50平方厘米,

  高是210厘米,它的体积是多少

  50210=10500(cm)

  答:圆柱形钢材体积为10500立方厘米。