小学六年级数学教案

2023-10-06

小学六年级数学教案 篇1

  知识网络

  列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

  一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

  设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

  重点难点

  列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

  学法指导

  (1)列方程解应用题的一般步骤是:

  1)弄清题意,找出已知条件和所求问题;

  2)依题意确定等量关系,设未知数x;

  3)根据等量关系列出方程;

  4)解方程;

  5)检验,写出答案。

  (2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

  (3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。

  经典例题

  例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

  思路剖析

  如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答

  设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

  答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

  例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解 答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草头数天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草头数天数-新生长的草

  新生长的草=草的生长速度天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草1020-草的生长速度20

  原有的草=每头牛每天吃的草1510-草的生长速度10

  所以:原有的草=每头牛每天吃的草200-草的生长速度20

  原有的草=每头牛每天吃的草150-草的生长速度10

  即:每头牛每天吃的草200-草的生长速度20

  =每头牛每天吃的'草150-草的生长速度10

  每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200-每头牛每天吃的草150

  =草的生长速度20-草的生长速度10

  每头牛每天吃的草(200-150)=草的生长速度(20-10)

  所以:每头牛每天吃的草50=草的生长速度10

  每头牛每天吃的草5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草25x-草的生长速度x

  原有的草=每头牛每天吃的草1020-草的生长速度20

  有:每头牛每天吃的草25x-草的生长速度x

  =每头牛每天吃的草1020-草的生长速度20

  所以:125x-5x=11020-520

  解这个方程

  25x-5x=1020-520

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

  例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

  解 答

  设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  解法一:用直接设元法。

  80x-40=(30x+40)2

  80x-40=60x+80

  20x=120

  x=6(座)

  解法二:用间接设元法。

  设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)30=(2x+40)80

  (x-40)80=(2x+40)30

  80x-3200=60x+1200

  20x=4400

  x=220(米3)

  由灰砖有220米3,推知修建住宅(220-40)30=6(座)。

  同理,也可设有红砖x米3。留给同学们练习。

  答:计划修建住宅6座。

  例4 两个数的和是100,差是8,求这两个数。

  思路剖析

  这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

  解 答

  解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:

  x+8+x=100

  解这个方程:2x=100-8

  所以 x=46

  所以 较大的数是 46+8=54

  也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:

  100-x-x=8

  所以 x=46

  所以 较大的数为100-46=54

  答:这两个数是46与54。

小学六年级数学教案 篇2

  教学目的:

  1、使学生理解一个数乘以分数的意义,学会分数乘以分数的计算方法。

  2、通过操作、观察培养学生的推理能力,发展学生的思维。

  教具准备:第4页例2的插图。长方形纸。

  教学过程:

  一、复习。

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

  1.理解一个数乘以分数的意义。

  (1)第一幅图:一瓶桔汁重 千克,3瓶重多少千克?怎样列式?

  指名列式,板书:

  问: 表示什么意思?指名回答,板书:求3个 或求 的3倍。

  (2)出示第二幅图:一瓶桔汁重 千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

  指名回答:半瓶用 表示;式子为: 。

  说明: 是求 的一半是多少,也就是求 的. 是多少。板书:求 的 。

  (3)出示第三幅图:一瓶桔汁重 千克, 瓶重多少千克?怎样列式?

  指名回答,板书: ,问: 表示什么意思?指名回答,板书:求 的 。

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:

  第一个算式与第二、三个算式中乘数有什么不同?

小学六年级数学教案 篇3

  【教学内容】

  邮票中的数学问题。

  【教学目的】

  探究如何确定邮资、合理支付邮资,培养学生归纳、推理能力。经历探究确定邮资、合理支付邮资的过程,培养学生归

  纳、推理能力。

  【重点难点】

  进一步理解运用综合知识。

  【教学准备】

  多媒体课件

  【情境导入】

  1.观看课本第109页的图和邮政相关费用表。

  问:从表中你得到哪些信息?

  如:(1)不到20g的信函,寄给本埠的朋友只要贴0.80元的邮票。

  (2)不到20g的信函,寄给外埠的朋友要贴1.20元的邮票。

  2.一封45g的信,寄往外地,怎样贴邮票?

  (1)学生观察表中数据,计算出所需邮资。

  (2)说一说你是怎么算的。

  想:每重20g,邮资1.20元,40g的信函,邮资是2.40元。5g按20g计算,所以,45g的信函,寄往外地所需邮资是3.60元。

  3.如果邮寄不超过100g的信函,最多只能贴3张邮票,只用80分和1.2元的邮票能满足需要吗?如果不能,请你再设计一张邮票,看看多少面值的邮票能满足需要。

  (1)不超过100g的信函,需要多少邮资?

  学生说一说各种可能的`资费。引导列表描述。(课本110页)

  (2)用80分和1.2元两种面值可支付的资费是多少?

  一张:80分1.2元

  两张:80分×2=1.6(元)

  1.2×2=2.4(元)

  0.8+1.2=2.0(元)

  三张:0.8×3=2.4(元)

  1.2×3=3.6(元)

  1.2+0.8×2=2.8(元)

  1.2×2+0.8=3.2(元)

  (3)你认为可以再设计一张多少面值的邮票?学生自行设计各种面值的邮票,看看多少面值的邮票能满足需要。

  4.布置作业:

  如果想最多只用4种面值的邮票,就能支付所有不超过400g的信函的资费,除了80分和1.2元两种面值,你认为还需要增

  加什么面值的邮票?

  观察邮票

  问:你寄过信吗?见过这些邮票吗?

  5.观看课本第109页的图,并说一说。

  (1)上面这些都是普通邮票,你还见过哪些邮票?

  (2)知道它们各有什么作用吗?交流后,使学生明白普通邮票面值种类齐全,可适用于各种邮政业务。

  【课堂小结】通过这节课的学习,你有什么收获?

  学生畅所欲言。

  【课后作业】完成练习册中本课时的练习。

小学六年级数学教案 篇4

  教学目的

  1、通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答、

  2、通过复习,培养学生的分析能力以及综合能力、

  3、通过复习,培养学生认真、仔细的学习习惯、

  教学重点

  通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答、

  教学难点

  通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答、

  教学过程

  一、复习准备、

  老师这里有两个数,一个是6,另一个是3、你能够用6与3提问并且进行回答吗?

  学生回答:

  (1)3是6的几分之几?

  (2)6是3的几倍?

  (3)3比6少几分之几?

  (4)6比3多几分之几?

  (5)6占6与3总和的几分之几?

  (6)3是6与3差的几倍?

  谈话导入:今天我们就来复习分数应用题、(板书:分数应用题的复习)

  二、复习探讨、

  (一)教学例4、

  学校举办的美术展览中,有50幅水彩画,80幅蜡笔画、___________?

  1、教师提问:根据已知条件,你都可以提出什么问题?并解答、

  2、反馈:

  (1)水彩画和蜡笔画共多少幅?

  (2)水彩画比笔画少多少幅?

  (3)蜡笔画比水彩画多几分之几?

  (4)水彩画比蜡笔画少几分之几?

  (5)水彩画是蜡笔画的几分之几?

  (6)蜡笔画是水彩画的几分之几?

  (7)

  3、教师质疑、

  (1)5问和6问为什么解答方法不同?(单位1不同)

  (2)3问和4问的问题有什么不同?(单位1不同)

小学六年级数学教案 篇5

  教学内容

  苏教版义务教育教科书《数学》六年级上册第35~36页例6、练一练,第37~38页练习六第6~9题。

  教学目的要求:

  学会计算分数的连乘,知道分数连乘的简便算法和计算时约分的简便方法。培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。

  教学重点难点:

  分数连乘的简便算法和计算时约分的`简便方法。

  教学过程:

  一、复习

  口算。题目略

  笔算

  问:分数乘法怎样计算?怎样约分计算比较简便?

  二、新课教学

  出示例6

  六年级同学为国庆晚会做绸花。一班做了135朵,二班做得朵数是一班的,三班做的朵数是二班的。三班做了多少朵?

  学生读题,尝试画线段图。

  问:要求三班做了多少朵,要先算什么?

  学生列式。

  分步(朵)(朵)

  综合

  5、这样的乘法算式你能算吗?

  讨论计算过程

  问:有没有不同的算法?

  比较不同算法。

  问:两种算法各是怎样算的?

  你认为哪种算法比较简便?怎样计算比较简便?

  6、归纳方法。

  问:今天的分数乘法,和以前计算的分数乘法有什么不同?怎样算简便?

  7练习

  做练一练

  做后全班订正,交流算法。

  三、巩固练习。

  1、列式计算。

  ①与的积的21倍是多少?

  ②一个数是32的,这个数的是多少?

  2、长方体的长是米,宽是米,高是米,它的体积是多少立方米?

  练习六7

  学生独立完成后,集体订正。

  四、全课总结

  这节课学习了什么内容?分数连乘怎样算比较简便?

  五、作业:练习第6、8、9题

  板书设计:

小学六年级数学教案 篇6

  教学内容:九年义务教育课本小学数学一年级(上海版)第一学期P30

  认知目标:1、通过补充,会求缺少的加数。

  2、会根据提供的情景,叙述有关补充情节,并解答。

  能力目标:1、还缺几个可以继续往前数,也可以对和进行分拆。

  2、培养学生看图表述的能力和探究的精神。

  情感目标:经历数学知识的应用过程,感受自己身边的数学知识,体会学数学、用数学的乐趣。

  教学重点:知道通过补充求缺少的加数。

  教学难点:根据提供的情景,叙述有关补充的情节,并解答。

  教学准备:课件、学具等

  教学设计思想:

  新教材十分注重让学生体验学习数学的过程,让学生人人学有价值的数学,人人都能获得必需的数学,不同的认在数学上得到不同的'发展。新数学课程给学生越来越充分的自主探索、合作交流、积极思考和时间操作的机会。现实的、有趣的和探索性的数学学习活动将成为数学课程内容的有机组成部分。为此在本课设计中,我尽量遵循二期课改理念,体现我校小班化教育的特点,从一下几方面考虑:

  1、基于学生经验的基础上进行数学教学。

  学生学习新知,首先必须具备接纳新知的原有知识基础和认知水平。在学习新知前,要帮助学生整理原有的认知结构和已有经验,为学新知作准备。因此课伊始,我设计了上超市的情景,让学生在模拟的购物活动中做好学习的准备,并一次来激发学生学习和解决问题的兴趣。

  2、在生动有趣的情景中进行教学。

小学六年级数学教案 篇7

  教材分析

  “圆环的面积”是九年义务教育六年级数学第11册《圆》这一章中的内容,它是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

  学情分析

  学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。学生的探究能力和应用能力较弱,因此教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索与合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。

  教学目标

  1、使学生能根据具体条件,比较灵活地计算圆的面积。

  2、使学生能认识环形,掌握计算环形面积的方法。

  3、能根据条件计算圆环的面积,培养学生的应用意识和解决简单实际问题的能

  教学重点和难点

  能根据条件计算圆环的面积,培养学生的应用意识和解决简单实际问题的能力。

  教学过程

  一、复习引入

  1、指名回顾:什么是圆的`面积?如何计算圆的面积?

  2、求圆的面积。

  (1)r=5厘米(2)d=10厘米

  二、探究新知。

  1、教学圆环的意义及计算方法。

  (1)出示例2(课件)

  (2)指名读题,获取信息。(教师解释圆环的概念)

  (3)你见过圆环吗?你能画一个(或剪一个)环形吗?学生动手操作。

  (4)提出问题:环形面积怎样计算?

  (5)独立或小组探究

  (6)全班交流。

  环形面积=大圆面积—小圆面积

  2、完成例2

  (1)指两名学生板演。

  (2)集体订正,交流解题思路。

  3、思考:环形面积还有更简便的方法吗?(学生讨论)

  三、巩固提高。

  完成第69页做一做2。

  1、自主完成。指名学生板演。

  2、集体订正。

  四、课堂小结

  这节课我们学习了什么?你有哪些收获?还想到什么问题?(随着学生对本节课所学知识的回忆,教师重点强化两个问题:一是如何计算圆的面积;二是如何计算环形的面积。)

  五、作业。

  1、一个圆环,大圆的直径是6米,小圆的直径是4米,这个圆环的面积是多少平方米?

  2、在一个直径是2米的圆形水池的四周,修一条宽1米的石子路,这条石子路的面积是多少?

小学六年级数学教案 篇8

  教学内容

  教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.

  教学目的

  使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.

  教具准备

  将复习中的第1题图画在小黑板上,第2题写在黑板上.

  教学过程

  一、复习

  1.看图,回答下面的问题.

  (1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

  (2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

  先让学生想一想,然后,再指定学生回答.

  2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?

  出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.

  核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.

  然后提问:

  “解答这样的题目关键是什么?”

  “关键是应该以谁作单位‘1’?”

  “用什么方法计算?怎样列式?”

  教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

  二、新课

  1.教学例1.

  出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

  请学生读题,提问:

  “这道题和上面复习中的.第2题有什么不同?”

  “解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

  教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

  2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

  “这道题怎样列式?”

  让学生讨论一下.

  学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

  3.教学例2.

  教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.

  口述并板书发芽率计算公式:

  发芽率=×100%

  教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.

小学六年级数学教案 篇9

  分数混合运算

  教学目标

  使学生掌握分数乘加、乘减混合运算.

  教学重点

  1.掌握分数混合运算的顺序

  2.会用乘法的运算定律在分数乘法中进行简算

  教学难点

  分数乘法的简算

  教学过程

  一、复习

  (一)说说你是怎样算的?

  (二)看看下面每组算式,它们有什么样的关系.

  ○ ○ ○

  (三)那么分数混合运算如何计算呢?能否应用运算定律简算呢?这节课我们来一起研究.

  板书课题:分数混合运算

  二、探索、悟理

  (一)出示例题

  (二)读题之后请同学试做(板演在黑板上)

  教师:这道题应该先算哪一步,再算哪一步?(强调运算顺序)

  (三)做一做

  教师提问:你按怎样的运算顺序计算的?

  (四)小结

  教师提问:谁能说一说分数乘加、乘减这样的混合运算按怎样的运算顺序计算呢?

  分数混合运算顺序:

  在一个分数混合算式中,既有一级运算,又有二级运算,先做第二级运算,后做一级运算;在有括号的算式里,先做括号里边的,再做括号外边的.

  (五)仔细观察下面两题,计算中有没有好方法使它们算得又快又准.

  小组汇报结果.

  = × ×    

  教师提问:说一说为什么这样算,依据什么?(乘法交换律、结合律、分配律)

  教师说明:由这两题可以看出,乘法运算定律同样可以应用在分数中.

  (七)做一做

  三、归纳、质疑

  (一)这节课学习了什么知识?(学生自己小结)

  混合运算、分数乘法中的简算.

  (二)你在学习中遇到了什么没有得到解决的问题吗?

  四、训练、深化

  (一)巩固混合运算

  1.判断

  (×)    (×)

  (√)    (√)

  2.计算

  (二)巩固简算

  1.填空

  2.简算

  (三)提高练习

  五、课后作业

  (一)用简便方法计算下面各题

  六、板书设计

小学六年级数学教案 篇10

  轴对称图形

  教学目标

  1.通过观察和操作认识轴对称图形和轴对称的含义.

  2.会画出轴对称图形的对称轴.

  3.使学生在操作中加深对图形的认识,建立空间观念.

  教学重点

  认识轴对称图形,并能正确画对称图.

  教学难点

  认识图形,建立空间观念.

  教学过程

  一、复习准备

  口算

  二、新授教学

  (一)出示图片:树叶、蜻蜓、天平

  (二)分组讨论

  1.这些图形有什么特点?

  2.找出一些生活中实例图形.

  (三)学生汇报

  图形左右部分一样

  (四)出示图片:实验

  先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一

  个什么样的图形?

  (五)小结:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.

  (六)练习

  1.下面哪些图形是轴对称图形?找出它们的对称轴.(出示图片:练习一)

  2.画出下面图形的对称轴.(出示图片:练习二)

  3.下面的图形,哪些是轴对称图形?(出示图片:练习三)

  (七)分组实验.

  1.出示图片:几何图形

  2.哪些图形是轴对称图形?画出它们的对称轴.

  3.小结:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形.有的轴对称图形有不止一条对称轴.

  三、课堂练习

  1.下面的数字,哪些是轴对称图形?它们各有几条对称轴?(出示图片:练习五)

  2.画出下面每组图形的对称轴.各能画几条?(出示图片:练习六)

  3.把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?(出示图片:练习四)

  四、课后作业

  运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

  五、板书设计

  轴对称图形

  轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.

  对称轴:折痕所在的这条直线叫做对称轴.

  教案点评:

  该教学设计体现了以学生为主体,通过让学生动手画、折、剪、量、比等方法,引导学生主动探索,启发调动了学生全部心理活动的积极性,使情感、意志、兴趣、注意、动机都趋于积极化,使学习知识和提高能力同步得到发展。

小学六年级数学教案 篇11

  一、教学内容:

  圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。

  二、教材分析:

  本单元是在学习了长方体和立方体的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的`过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。

  三、学情分析:

  根据学生学习长方体、正方体的表面积和体积,圆的周长和面积时,所反映出来的情况来看:

  1、学生的空间观念较为薄弱。因此,在教学时重视发展学生的空间观念操作与思考、想象相结合,清晰地认识图形、探索图形特征。

  2、学生对于类比、转化等数学思想方法比较模糊。为此,在教学圆柱的体积时,着重引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

  3、学生在应用已学的知识进行解决生活中的数学问题是不够灵活的。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等。因此,将以大量的基础知识进行练习,巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

  四、教学目标:

  1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

  五、教学重、难点:

  1、重点:

  圆柱体体积的计算

  2、难点:

  (1)圆柱体体积公式的推导过。

  (2)圆柱体侧面积、表面积的计算。

  (3)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。

小学六年级数学教案 篇12

  学习目标:

  1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的图形。

  2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

  学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

  学习难点:在方格纸上画出线段旋转90度后的图形

  课前准备:钟表,课件,教具

  学习过程

  环节学案

  回顾旧知

  1、物体的运动有( )和( )。

  2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。

  自主探索

  1、钟面上指针旋转的`方向就是( )方向;相反的方向就是( )方向。

  2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

  3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

  4、旋转三要素指( )( )( )。

  合作探究

  当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

  达标检测

  基础性作业:

  课本29页练一练1、2题(看课件)。

  一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

  提高性作业:

  1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

  拓展性作业:

  如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

小学六年级数学教案 篇13

  教学内容:教材第5~6页例2、例3和练一练,练习一第48题。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:掌握圆柱侧面积的计算方法。

  教学难点:能根据实际情况正确地进行计算。

  教学过程:

  一、复习铺垫

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二、教学新课

  1.认识表面积计算方法。

  (1) 请同学们拿出圆柱来看一看,想一想圆柱的`表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

  5.组织练习。

  (1)下面的数用进一法保留整数,各是多少?(口答)

  162.3 29.4 3.8 42.6

  (2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

  三、课堂小结

  这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

  四、布置作业

  课堂作业:练习一第5~7题。

小学六年级数学教案 篇14

  【教学内容】

  教科书第1~3页例1、2,练习——第1~4题。

  【教学目标】

  1.能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。

  2.能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。

  3.培养学生的迁移类推能力和自主探索的精神。

  【教学重、难点】

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

  【教学过程】

  一、欣赏主题图,激趣引入

  教师:同学们,新的一学期开始了,看看愉快的数学之旅又将带我们到哪些新的站点呢?请同学们观察主题图。(多媒体出示主题图)

  教师:认真观察,说说你获得了哪些信息?(学生观察回答)

  你们能根据主题图提出哪些数学问题?

  这些问题你们能试着列出算式吗?它们都是些什么算式?

  (老师随着学生的回答板书相关的连加算式或分数乘法算式)

  这些算式中的数有什么特点呢?

  学生:有的是加法算式,有的是乘法算式,但这些数都与分数有关。

  揭示课题:从今天开始,我们就一起来研究分数乘法。

  [评析:新学期开始的第一节课,通过主题图既调动学生开学学习的积极性,又在主题图的信息中,感受数学与生活的联系。同时,教师又注意引导学生在众多信息中注意搜索与分数乘法相关的信息,为本课时教学作好铺垫。]

  二、探究新知

  1.感知分数乘法的意义。

  (1)复习整数乘法的意义。

  课件展示,并配上声音:每人吃5个饼,4人共吃多少个饼?

  学生列式:5+5+5+55×4

  教师:表示什么意思呢?4个5相加的`和是多少?5的4倍是多少?

  (2)分数乘法的意义。

  课件展示例1的情境图:每人吃15个饼,4人吃多少个饼?

  学生尝试列式:15+15+15+1515×4或 4×15

  教师:表示什么意思呢?与整数乘法的意思相同吗?(4个15是多少;15的4倍是多少?)

  2.利用意义探索计算法则。

  (1)教师:15×4该怎样算呢?自己在练习本上试一试。

  全班汇报,说说你得多少,怎样想的?指名学生回答,得出:

  15×4表示4个15相加,4个15就是45。

  (2)试一试。

  45×2=3×14=

  学生在练习本上做好后,集体订正。并请学生说说怎样想的。

  (3)口算(教师即时板书):25×2、5×17、29×4、2×45。

  (4)议一议:这些分数乘法有什么特点?

  结合学生回答板书(分数乘整数),根据刚才的计算,你觉得分数乘整数怎样算?

  根据交流小结:分数乘整数,用整数与分子相乘的积作分子,分母不变。

  3.教学例2。

  (1)出示:38×2 。

  教师:这个乘法会算吗?先自己试一试。

  学生尝试,并适时提问:你在计算过程中遇到什么问题,你怎么解决的?

  教师巡视,发现学生不同的约分方法,并抽学生板书。(学生可能出现:计算结果不约分;先计算出结果再约分;或在计算过程中先约分再计算这三种情况)

  全班交流,指名说说计算过程中遇到什么问题,如何解决的。

  针对三种不同的情况进行评价:你喜欢哪种方法?为什么?

  结合学生交流,老师强调:在分数乘法中,计算结果要化成最简分数。我们可以先将整数与分母约分,再按分数乘整数的方法计算。这样做,计算数据较小,计算更准确。

  (2)练习:29×6=12×34=

  观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。

  集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与分子约分的错误方法,让学生辨析。

  (3)学生再次小结分数乘整数的计算方法。

  现在你能比较完整地总结分数乘整数的计算方法吗?

  结合学生交流,小结方法:先看整数与分数的分母能否约分,能约分的先约分,然后用整数与分子相乘的积作分子,分母不变。

  [评析:从整数乘法的意义自然过渡到分数乘整数的意义,并通过意义探索计算方法,让数学知识前后联系更紧密。同时注重学生计算方法的主动探索,强调数学知识与方法的自主建构,注重学生错误的提前预判。]

  三、巩固练习,反馈提高

  1.课堂活动第1题。学生独立完成,集体订正。教师追问:18×5表示什么意思?

  2.练习——第1~3题。学生独立完成,教师巡视指导学困生,集体讲评。抽1~2题说说计算方法。

  四、课堂小结:

  本节课你有什么收获?关于分数乘法,你还想知道什么?

  [评析:对于分数乘整数的计算法则,教师并没有过多地干预与包办,而是充分的在情境图的基础上,通过整数乘法意义的回顾,经历计算方法的自主探索过程,掌握计算方法。同时,注重独立思考与合作交流的学习方式的运用,让学生真正成为学习的主人。]