初二数学上册教案大全

2023-10-07

初二数学上册教案大全 篇1

  教材分析

  1、本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。

  2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

  学情分析

  1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

  2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

  3、学生认知障碍点:根据问题信息写出一次函数的表达式。

  教学目标

  1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

  2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

  3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

  教学重点和难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

初二数学上册教案大全 篇2

  一、教学目的:

  1.掌握菱形概念,知道菱形与平行四边形的关系.

  2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

  3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、重点、难点

  1.教学重点:

  菱形的性质1、2.

  2.教学难点:

  菱形的性质及菱形知识的综合应用.

  三、课堂引入

  1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

  2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

  菱形定义:有一组邻边相等的平行四边形叫做菱形.

  【强调】 菱形(1)是平行四边形;(2)一组邻边相等.

  让学生举一些日常生活中所见到过的菱形的例子.

  四、例习题分析

  例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

  求证:∠AFD=∠CBE.

  证明:∵四边形ABCD是菱形,

  ∴ CB=CD,CA平分∠BCD.

  ∴∠BCE=∠DCE.又CE=CE,

  ∴△BCE≌△COB(SAS).

  ∴∠CBE=∠CDE.

  ∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

  ∴ ∠AFD=∠CBE.

  例2(教材P108例2)略

  五、随堂练习

  1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.

  2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.

  3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

  4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

  六、课后练习

  1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.

  2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.

初二数学上册教案大全 篇3

  一、教学目标

  1.了解二次根式的意义;

  2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3.掌握二次根式的性质和,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:

  (1)二次根的意义;

  (2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式.

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

  例3当字母取何值时,下列各式为二次根式:

初二数学上册教案大全 篇4

  教学目标

  1、知识与技能目标

  (1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.

  (2)能判断给出的数是否为无理数,并能说出理由.

  2、过程与方法目标

  (1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.

  (2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.

  (3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.

  3、情感与态度目标

  (1)激励学生积极参与教学活动,提高大家学习数学的热情.

  (2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.

  (3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.

  教学重点

  1、让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.

  2、会判断一个数是否为有理数,是否不是有理数.

  3、用计算器进行无理数的'估算.

  教学难点

  1、把两个边长为1的正方形拼成一个大正方形的动手操作过程.

  2、无理数概念的建立及估算.

  3、判断一个数是否为有理数.

  教学准备:

  多媒体,两个边长为1的正方形,剪刀,短绳.

  教学过程:

  第一环节:章节引入(2分钟,学生阅读感受)

  内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:

  (1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?

  (2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?

  b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?

  第二环节:复习引入(3分钟,学生口答)

  内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称.

  请用上述材料中所涉及的知识证明下面的问题:

  a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?

  b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?

  第三环节:活动探究(15分钟,学生动手操作,小组合作探究)

  (一)发现新数

  内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.

  在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:

  (1)设大正方形的边长为,应满足什么条件?

  (2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?

  (3)可能是分数吗?说说你的理由?

  引出课题《数怎么又不够用了》

  (二)感受新数的广泛性

  内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。

  (三)巩固验证,应用拓展

  内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.

  b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些

  小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段

  第四环节:介绍历史,开阔视野(3分钟,学生阅读)

  内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.

  第五环节:课时小结(2分钟,全班交流)

  内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?

  b感受数不够用了,会确定一个数是有理数或不是有理数.

  c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.

  第六环节:布置作业

初二数学上册教案大全 篇5

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.

  (2)-3x≥0,x≤0,即x≤0时,是二次根式.

  (3),且x≠0,∴x>0,当x>0时,是二次根式.

  (4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是二次根式.

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+3≥0,得.

  (2)由,得3a-1>0,解得.

  (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.

  (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

初二数学上册教案大全 篇6

  教学目标

  1.知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

  2.过程与方法

  经历探索一次函数的应用问题,发展抽象思维.

  3.情感、态度与价值观

  培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

  重、难点与关键

  1.重点:一次函数的应用.

  2.难点:一次函数的应用.

  3.关键:从数形结合分析思路入手,提升应用思维.

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

  教学过程

  一、范例点击,应用所学

  【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

  y=

  【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

  拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习.

  三、课堂总结,发展潜能

  由学生自我评价本节课的表现.

  四、布置作业,专题突破

  课本P120习题14.2第9,10,11题.

  板书设计

  14.2.2一次函数(4)

初二数学上册教案大全 篇7

  教学目标:

  经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  教学重点和难点

  重点:

  圆与圆之间的几种位置关系

  难点:

  两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  教学过程设计

  一、从学生原有的认知结构提出问题

  (1)复习点与圆的位置关系;

  (2)复习直线与圆的位置关系。

  二、师生共同研究形成概念

  1.书本引例

  ☆ 想一想 P 125 平移两个圆

  利用平移实验直观地探索圆和圆的位置关系。

  2.圆与圆的位置关系

  每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出来

  ☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;

  若两圆有一个交点,则这两个圆的位置关系是 相切 ;

  若两圆有两个交点,则这两个圆的位置关系是 相交 ;

  ☆ 想一想 书本P 126 想一想

  通过实际例子让学生理解圆与圆的位置关系。

  3.圆与圆相切的性质

  ☆ 想一想 书本P 127 想一想

  旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。

  如果两圆相切,那么两圆的连心线经过切点

  4.讲解例题

  例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。

  5.讲解例题

  例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。

  三、随堂练习

  1.书本 P 128 随堂练习

  2.《练习册》 P 59

  四、小结

  圆与圆的位置关系;圆心距与两圆半径和两圆的关系。

  五、作业

  书本 P 130 习题3.9 1

初二数学上册教案大全 篇8

  教学目标

  1.会解简易方程,并能用简易方程解简单的应用题;

  2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;

  3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

  教学建议

  一、教学重点、难点

  重点:简易方程的解法;

  难点:根据实际问题中的数量关系正确地列出方程并求解。

  二、重点、难点分析

  解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

  判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

  列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

  三、知识结构

  导入方程的概念解简易方程利用简易方程解应用题。

  四、教法建议

  (1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

  (2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

  (3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

  (4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

  五、列简易方程解应用题

  列简易方程解应用题的一般步骤

  (1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.

  (2)找出能够表示应用题全部含义的一个相等关系.

  (3)根据这个相等关系列出需要的代数式,从而列出方程.

  (4)解这个方程,求出未知数的值.

  (5)写出答案(包括单位名称).

  概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.

初二数学上册教案大全 篇9

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个 什么角?

  问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?

  问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。

  4、变式训练,巩固提高

  根据例4 的度数的求法,思考如下问题:

  (3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?

  (4)当MN绕着点D旋转过程中, 会有怎样的变化?

  提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时, =

  变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,

  变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =

  变化4当直线MN与AC、BC的交点在C点时, =

  经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。

  5、小结

  通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。

  6、布置作业

  a、书面作业P43#3

  b、上交作业P42#16、17