人教版初二数学下册教案 篇1
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点
1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识。
利润=售价—成本;=商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息—利息税=48.6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×2,利息税为2.43%X×2×20%
根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%—x
由等量关系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服装的成本是125元。
三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
人教版初二数学下册教案 篇2
教学目标:
1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5:a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
人教版初二数学下册教案 篇3
教学目标
1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;
2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;
教学重点
掌握频率分布直方图概念及其应用;
教学难点
绘制连续统计量的直方图
教学过程
Ⅰ.提出问题,创设情境,引入新课:
问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?
63名学生的身高数据如下:
158158160
168158154
159167170
149163163
162163157
155156165
156157153
解:(确定组距)最大值为172,最小值为149,他们的差为23
(身高x的变化范围在23厘米,)
(分组划记)频数分布表:
身高(x)划记频数(学生人数)
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
从表中看,身高在155≤x<158,158≤x<161,161≤<164三组人最多,共41人,所以可以从身高在155~164cm(不含164cm)之间的学生中选队员
(绘制频数分布直方图如课本P72图12.2-3)
探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?
分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。
归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。
我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。
首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。
频数折线图也可以不通过直方图直接画出。
根据表12.2-2,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。
II课堂小结:
(1)怎样制作频数分布直方图和频数分布折线图
(2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组
(3)如果取个长方形上边的中点,可以得到频数折线图
(4)求各小组两个断点的.平均数,这些平均数叫组中值。
人教版初二数学下册教案 篇4
一、创设情境导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索建立模型
(一)认一认形成表象
师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?
不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)
(二)找一找感知特征
1、在例题图中找平行四边形
师:老师这有几幅图,你能在这上面找到平行四边形吗?
2、寻找生活中的平行四边形
师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)
(三)做一做探究特征
1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】
(四)练一练巩固表象
完成想想做做第1、2题
(五)画一画认识高、底
1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。
3、平行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。
2、完成想想做做第6题(课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?
(3)得出平行四边形的特性
师再捏住平行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找平行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
人教版初二数学下册教案 篇5
一、学习目标:
1.添括号法则
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用
难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+(2)a-b+c=a-
(3)a-b-c=a-(4)a+b+c=a-
2.判断下列运算是否正确
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:
去括号法则
六、作业:
教科书习题
人教版初二数学下册教案 篇6
一、教学目标
1.了解分式、有理式的概念。
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件。
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
3。认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。
三、例、习题的意图分析
本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。
1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。
P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别。
希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。
2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。
3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。
4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。
四、课堂引入
1.让学生填写P4[思考],学生自己依次填出:
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程。
设江水的流速为x千米/时。