人教版小学五年级数学教案 篇1
一、活动目标:
1、能分辨物体的长和短,并学会用语言表达。
2、乐意参加操作活动。
二、活动课时:1
三、活动重难点:
重点:要求幼儿会比较物体的长短、大小、高矮。
难点:培养幼儿的观察力。
四、活动准备:
1、比较长和短。
——教师出示长短不一的两根绳:这两根绳哪根长?哪根短?语言表达:长长的绳、短短的绳。
——请个别幼儿把长长的绳找出来;把短短的绳找出来。
——出示长短不一的两支粉笔:这两支粉笔哪根长?哪根短?语言表达:长长的粉笔、短短的粉笔
——请个别幼儿把长长的粉笔找出来;把短短的粉笔找出来。
2、谁的鼻子长?
——教师出示两只大象的图片,引导幼儿用眼睛观察“谁的鼻子长?”
——根据幼儿所说,教师用彩笔给鼻子长的小象涂色。
——幼儿在幼儿用书上依次操作“谁的鼻子长”、“谁的耳朵长”“谁的尾巴长”“谁的脖子长”
3、长颈鹿找东西。
——教师出示“长颈鹿找东西”的图片:长颈鹿爸爸/妈妈和长颈鹿宝宝起床了,他们分别在找自己的围巾,围巾应该是谁的?
——根据幼儿所说,教师用笔分别给他们连线。
——幼儿在幼儿用书上依次操作连线。
人教版小学五年级数学教案 篇2
教学目标:
1.借助已有经验,理解小数乘小数的算例,掌握基本算法。理解因数与积之间的大小关系。
2.提高运用转化的方法解决新问题的能力,发展学生的运算及推理能力
3.感受小数乘整数与现实生活的联系,激发学生学习数学的兴趣
教学重难点:
教学重点:小数乘小数的算理、算法
教学难点:小数乘小数计算中积的小数位数和小数点位置的确定
一、复习导入,新知铺垫
1.师:上一节课我们一起学习了小数×整数的计算方法,老师这里有一道题,“4.6×8”你们能算出来吗?快拿起课堂练习本算一算。
2.师:你们是怎样计算的?
预设:把4.6扩大10倍得46,积也就扩大了10倍。46×8=368,积368缩小10倍变回原来的积368÷10=36.8。
3.师:我们通过将小数转化为整数,成功解决了小数×整数的问题。那小数×小数呢?你们会计算吗?那这节课我们就一起研究小数×小数的问题,
二、自主探究,深入新知
1.师:接下来请你们以小组为单位列出三道算式,等会我们挑选一组同学的算式为本节课的研究对象。在列算式时要注意小数不宜过长,不然不方便计算。
预设:2.4×0.8(一位×一位)、1.92×0.9(两位×一位)、0.45×0.6(两个小数都不大于1)
2.师:这三道题你们会计算吗?拿起练习本,尝试独立计算。如果遇到问题可以小声地与同桌交流。
3.学生独立活动,指名扮演
3.师:这三个不同的算式都是怎样计算的?
预设:根据积的变化规律,先将小数乘法转化为整数乘法算出积。因数扩大,积也就扩大了相应倍数。要求原来的积,就应把乘出来的积缩小相应倍数。
4.师:那看来小数×小数的计算难不倒同学们。先按照积的变化规律将小数乘法转化为整数乘法算出积,再将得到的积缩小相应倍数得到原来的积。
5.师:那同学们你们仔细观察这三道题有什么不同有什么相同?再与同桌交流交流。
预设:它们的相同点在于都是小数×小数;不同点在于第一道算式是一位小数乘一位小数,第二道算式和第三道算式是两位小数×一位小数。
6.师:仔细观察因数和积的小数位,说说你有什么发现?
预设:第一个竖式中,两个因数中一共有2位小数,积也是2位小数;后面2个竖式中,两个因数中一共都有3位小数,而它们的积都是3位小数。我发现在小数乘法中积的小数位数等于两个因数的小数位数总和。
10.师:在计算小数乘法时,我们可以先将小数乘小数转化为整数乘整数算出积,然后根据因数中小数的位数确定积中小数点的位置。
三、聚焦问题,突破难点
1.探究乘得的积的小数位数不够时,怎么点小数点。
(1)出示例4:0.56×0.04
师:这道题你能运用小数乘法的计算方法来计算下面这道题吗?
(2)学生独立计算,教师巡视
(3)师:在计算的过程中,你们遇到了什么新问题?
预设:0.56是两位小数,0.04也是两位小数,那积应该是四位小数,可是现在乘得的积224是一个三位数,乘得的积的小数位数不够点小数点。
(4)师:乘得的积的小数位数不够时,怎样点小数点?可以借助之前学过的知识帮助我们解决这个问题吗?
预设:利用之前学过的“小数点移动引起小数大小变化的规律”,当乘得的积的小数位数不够时,在积的前面用0来补足小数位数,再点上小数点。
2.探究积与因数的大小关系
(1)出示:“做一做”第2题完成版本
师:看来同学们对小数乘小数的计算都掌握了。接下来请同学们仔细观察这两组算式,将每组题的计算结果和第一个因数进行比较,与同桌交流你有什么发现。
(2)全班交流、总结规律
预设:通过观察,第一组乘法算式中,第一个因数2.4不变,第二个因数都>1,乘得的积都>2.4;第二组乘法算式中,第一个因数1.2不变,第二个因数都<1,乘得的积都<1.2。我发现一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。因为0乘任何数都得0,所以这个数不能是0。
四、梳理反思,内化提升
1.师:通过本节课的学习,你们有怎么样的收获?
2.师:本节课我们学习并总结了小数乘法的计算方法“在计算小数乘法时,我们可以先将小数乘小数转化为整数乘整数算出积,然后根据因数中小数的位数确定积中小数点的位置。当积的位数不够时要在前面用0补足,再点小数点”,还知道了积与因数的大小关系。我们通过自主探索,将小数×小数转化为整数×整数进行思考。再一次成功借助旧知识帮忙解决了新问题。
人教版小学五年级数学教案 篇3
一、学情分析:
《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
二、教学目标:
1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
三、教学重难点:
重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
四、教学过程:
(一)导入新课。找出1~20各数的因数。
你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)
今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]
(二)新授
探究一:认识质数和合数
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)
师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)
师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)
[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]
探究二:找出100以内的质数,做一个质数表。(课本P14例1。)
(媒体出示图表)
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)
师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?
(学生可能回答:50的倍数,51的2倍是102,超过100了。)
(学生制作100以内的质数表。)
[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]
五、练习
(课本P16∕练习四第一、二题。)
六、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3、1不是质数,也不是合数。
人教版小学五年级数学教案 篇4
教学目标
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。
学情分析
这是一节有趣的活动课,学生非常感兴趣,在游戏中探索可能性。
教学重点:
体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
教学难点:
用分数表示可能性的大小。对随机思想的理解。
教学过程
一.导入引出课题:
1.师:这些小朋友在干什么?(踢足球)如果要开始一场足球赛大家觉得用抛硬币的方法决定谁先开球,这样公平吗?为什么?(课件)
2.揭题:硬币抛出后可能是那些面?(正反面),所以这是一个不确定的事件,今天我们就进一步研究不确定事件发生的可能性。(板书:可能性)
二.用分数表示简单事件发生的可能性
1.猜测:
(1)既然认为是公平的,那么大家想一想正面朝上的可能性是多少?你是怎样想的?
(2)那掷出反面的可能性是多少?为什么?你能用一个数来表示吗?
人教版小学五年级数学教案 篇5
教学内容:
教科书第64、65页的内容。
教学目标:
1、理解并掌握等式的性质。根据等式的性质进行等式变换。
2、体会“猜想-验证”的探究过程。
3、感受等式的对称美。
教学重难点:
等式性质的归纳总结
教学过程:
一、故事导入
讲故事:王财主家有一黄一灰两头懒驴。这天,他把每种货物都平均分装在袋子里,让俩驴驮运。因为俩驴谁都不肯多驮一点,所以它俩只能驮得一样重。黄驴说:“我挑一袋大米。”灰驴就说:“我挑两袋土豆。”一袋大米的质量正好等于两袋土豆的质量。
为了方便,在课堂上用红球代替大米,一个a克;用绿球代替土豆,一个b克;用橡皮代替花生,一块m克;用胶带代替黄豆,一个n克。
得出等式a=2b。
第二轮它俩可能会加挑什么货物呢?
二、探究新知
1、探索“等式两边加上同一个数”、“等式两边乘同一个数”。
猜想:第二轮它俩可能会加挑什么物品呢?
(都加挑一块橡皮)
此时它俩所挑物品的质量相比第一轮发生了什么变化?
(都增加m克)
分别变成了多么克?
(黄驴变为a+m克,灰驴变为2b+m克。)
验证:俩驴所挑物品质量真的还一样重吗?在天平上摆摆看。
(天平平衡)
结论:都加挑一块橡皮,俩驴所挑物品质量仍然一样重。
观察这些等式,都是由等式a=2b变换得来的,你能对这5个等式变换进行分类吗?
(前三个都是在等式两边加上同一个数;后两个都是在等式两边乘同一个数。)
这就是等式变换的2条规律:等式两边加上同一个数,左右两边仍然相等;等式两边乘同一个数,左右两边仍然相等。
小组内的其它猜测,先用式子表示,然后合规律的说出所运用的规律,不合规律的在天平上摆摆看。
2、探索“等式两边减去同一个数”。
思考并说理:等式两边减去同一个数,左右两边还相等吗?
(相等。天平左边一个红球和一块橡皮,右边两个绿球和一块橡皮,天平是平衡的。当两边都拿走一块橡皮,天平还是平衡的。)
相应的由哪个等式变换为哪个等式?
(由a+m=2b+m变换为a=2b。)
怎么变的?
(两边都-m)
观察并思考:这些等式的变换,有什么共同点?
(都是在等式两边送去同一个数)
这就是等式变换的第3条规律,你能用一句话来总结吗?
学生总结:等式两边减去同一个数,左右两边仍然相等。
总结等式性质1:等式两边加上或减去同一个数,左右两边仍然相等。
提示课题:这就是今天的学习内容“等式的性质”。
3、探索“等式两边除以同一个不为0的数”。
思考并说理:等式两边除以同一个数,左右两边还相等吗?
(相等。天平左边2个红球,右边4个绿球,天平是平衡的,当两边的数量变为二分之一时,天平还是平衡的。)
相应地有哪个等式变换为哪个等式?
(由2a=4b变换为a=2b)
怎么变的?
(两边都除以2)
观察并思考:这些等式的变换,有什么共同点?
(都是在等式的两边除以同一个数)
这就是等式变换的第4条规律,你能用一句话来总结吗?
学生总结:等式两边除以同一个不为0的数,左右两边仍然相等。
为什么强调不为0?
(因为0不能作除数)
总结等式性质2:等式两边乘同一个数,或者除以同一个不为0的数,左右两边仍然相等。
三、巩固练习
1、第66页第5题
2、对等式6x=8变换
3、平衡天平上的变化。
4、方程的变换。
四、课堂反思
1、等式的性质回顾
2、本节课的感想。
教学反思:
本节课以故事导入,生动有趣,但讲故事又不仅仅只是导入新课的作用。学生围绕故事中的问题”第二轮它俩可能会加挑什么物品呢“展开猜测交流,从而引出对等式变换的猜测,学生把生活经验和学习内容紧密地联系起来,学习也变得更加容易。在教学”等式两边加同一个数“和”等式两边乘同一个数时“采用了”猜想——验证“这一获知模式。也让学生初步了解了这一模式。在教学”等式两边减去同一个数“和”等式两边除以同一个数“时,给了学生充分的思考、交流空间,让他们充分运用自己的学习经验,动脑、动手,得出结论,并说出自己的判断依据。培养了学生的动手、动脑能力和说理能力。
人教版小学五年级数学教案 篇6
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3
人教版小学五年级数学教案 篇7
教学内容:
2,5倍数的特征
教学目标:
1、使学生经历探索2,5的倍数特征的过程,理解其特征,能判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。在观察、猜测和讨论过程中,提高探究问题的能力。
3、有克服困难和解决问题的体验,对自己得到的结果正确与否有一定的把握和信心。经历观察、归纳、类比等学习数学的活动,使学生感受数学思考过程的合理性。
教学重点:
理解2,5的倍数的特征
教学难点:
对有关信息如何进行收集、分析、归纳发现数的特征
教学过程
一、提示课题
这节课,老师要带领全体同学进行探索活动,探索的知识是“2,5的倍数的特征”。(板书课题)
二、探索活动
1、2,5的倍数的特征
⑴给出几个式子,找找谁是谁的倍数,观察发现是2或者5的倍数,引出今天的课题2,5的倍数的特征。
8÷4=2
6÷3=2
10÷5=2
15÷3=5
20÷4=5
8,6,10都是2的倍数。10,15,20都是5的倍数
那我们今天来学习2,5的倍数的特征
⑵游戏
班上20位同学,老师按照每组5位同学,按顺序排列了序号为1-20号。
1.请序号为2的倍数的同学站起来
2.请序号为5的倍数的同学举起手
3.请序号既是2又是5的倍数的同学举起你们的双手
1.2,4,6,8,10,12,14,16,18,20
2.5,10,15,20
3.10,20
学生总结归纳出2,5的倍数的特征
学生完成后,展示结果:
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
在学生理解2的倍数的特征的基础上,师说明偶数和奇数的含义,并板书:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
5的倍数的特征:个位上的数字是0或5的数,都是5的倍数。
⑵实践检验
①出示1~100的数字表格
②在表中找出2的倍数,并做上记号。
③在表格中找出5的倍数,师做记号。
④既是2的倍数又是5的倍数,做记号。
⑶尝试判断
出示数字:70、90、85、105、120、92、88、104、106
①判断哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数。
②学生运用乘法或除法计算,来验证判断结果。
(4)归纳总结,并板书。
三、巩固练习
1、找出2、5的倍数。
1 21 30 35 39 2 40 12 15 60 18 72 85 90
(1)找出2的倍数、5的倍数。
(2)哪些数既是2的倍数又是5的倍数?
2、火眼金睛辨对错:
(1)偶数都是2的倍数。
(2)210既是2的倍数又是5的倍数。
(3)两个奇数的和不一定是偶数。
3、猜数。
从左边起:
第一个数字最大的一位偶数
第二个数字5的倍数
第三个数字最小的奇数
第四个数字不告诉你
不过这个四位数既是2的倍数又是5的倍数
4、任选两个数字组成符合要求的数:6、0、9、5
(1)奇数
(2)2的倍数
(3)5的倍数
(4)既是2的倍数又是5的倍数
5、□里能填几?
(1)2的倍数:8□
(2)5的倍数:7□ □□
四、课堂小结:
2和5的倍数的特征是我们已经研究过了,3的倍数会有什么特征呢,我们下节课研究。
五、板书设计:
2,5的倍数的特征
5的倍数的特征:个位上的数字是0或5的数
2的倍数特征:个位上是0、2、4、6、8的数
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
人教版小学五年级数学教案 篇8
教学内容:
人教版小学数学五年级下册第二单元第5第6页《因数与倍数》
教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:
1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学准备:
多媒体课件
教学过程:
一、自主探索
1、出示书上主题图,学生列出乘法算式
2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)
2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?
学生口答,巩固因数和倍数的含义?
3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?
学生发表自己的见解。
总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。
4、你还能找出12的其他因数吗?
学生独立完成,集体订正。
总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
5.小结引出课题。
师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)
6.例题学习
出示例题:18的因数有哪几个?
学生独立试做,集体订正
(1)想谁和谁相乘是18?
18=1×1818=2×918=3×6
所以18的因数是1,2,3,6,9,18。
(2)列出被除数是18的除法算式
18÷1=1818÷2=918÷3=6
18÷6=318÷9=218÷18=1
分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个
7.出示做一做:
30的因数有哪些?36呢?学生独立练习,并口述方法,
由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。
8.小结:用字母表示数的知识表述因数和倍数的关系
M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。
A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。
二、巩固练习
1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?
4和2426和1375和2581和9
2.课本练习
三、总结反思:
由学生回忆本节课所学内容。
人教版小学五年级数学教案 篇9
教学目标:
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学重点:
自主探究梯形的面积公式。
教学难点:
理解并掌握梯形的面积公式,会计算梯形的面积。
教学准备:
师:多媒体、完全一样的梯形若干个。
生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
教学过程:
1.导入
上课!同学们好,同学们请坐,上课之前老师想请大家帮一个忙,学校安排老师给校车的车窗贴防晒膜,可是老师不知道买多少防晒膜合适,你们能帮帮我吗?哪位同学能说一说?老师看到了你渴望的眼神,就请你来说一说吧。
你说通过观察发现车玻璃的形状是梯形,只需要算出来这个梯形车玻璃的面积是多少就能知道需要买多少防晒膜了。
那我们该怎么求出梯形的面积是多少呢?老师看到同学们露出了疑惑表情,没关系,这节课我们就一起来学习梯形的面积。
2.新授
同学们,虽然我们不知道梯形的面积公式,但是之前咱们已经探究了平行四边形的面积,还记得我们是如何探究的吗?你来说,哦,你说我们是通过转化为我们熟悉的长方形来进行探究的,真棒!那梯形能不能转化成我们熟悉的图形来探究它的面积呢?
现在就请同学们前后桌四人为一小组,拿出老师课前分发给大家的各种各样的梯形,来剪一剪,拼一拼,看看有什么发现吧,小组合作,现在开始!
老师给大家五分钟的时间!
好了,时间到。大家都停下来吧,哪个小组代表来展示你们的结果?
第三小组代表,你来说。你说之前学过了三角形和平行四边形,所以你把梯形剪成了一个三角形,一个平行四边形。很好,说的请具体,还有哪个小组代表有不同的做法?
第一小组代表,你们是怎么做的?哦你说你们把梯形剪成了二个三角形。同学们各有各的方法,你们可真厉害。还有别的小组有不同的方法吗?
哦,第二小组代表,你的手举的最高,你来说。哦,你说你是用两个完全相同的梯形拼成了一个平行四边形!
真棒!同学们,请看大屏幕,老师在大屏幕出示了这种用两个完全相同的梯形拼成一个平行四边形的方法!
好了,我们现在已经得到了我们熟悉的图形,该如何推导梯形的面积公式呢?我们以第三种方法一起来推导一下吧。同学们,请思考一下,平行四边形的面积和梯形的面积有什么关系呢?平行四边形的底和高又与梯形的什么有关呢?
这个问题,请大家先独立思考,再和你的同桌交流一下,开始吧。
你最先举起了手,你来说。哦,你说平行四边形的面积是梯形的2倍!梯形的面积是平行四边形的一半!真棒!还有谁再来补充一下呢?第二排戴眼镜的女生,你来说,哦,你说平行四边形的底就是梯形的上底+下底,高就是梯形的高!真是个了不起的发现!
同学们,我们知道,平行四边形面积等于底乘高,所以梯形的面积就是(上底+下底)x高÷2!如果我们用a表示上底,b表示下底,高是h,梯形的面积公式是怎样的呢?你已经迫不及待了,就请你来说吧,哦,你说梯形的面积等于(a+b)xh÷2!。思路很清晰说的很完整,请坐!所以梯形的面积计算公式是S=(a+b)xh/2!
同学们,我们用这种方法推导出了梯形的面积公式,那刚刚我们采用剪一剪的方法,得到了一个平行四边形和一个三角形,也可以得到两个三角形,这两种方法能不能推导出梯形的面积公式呢?这个问题,就留给同学们课下探究吧!
3.巩固
同学们,我们已经知道了梯形的面积公式,现在让我们一起来解决校车防晒膜的问题,窗户的上底长40里米,下底长50厘米,高30厘米,请你们在三分钟的时间内独立算出校车需要多少防晒膜。
时间到,同学们,请看大屏幕,老师已经出师了答案,你们的答案和老师的答案一样吗?
哦,都一样啊,看来大家都掌握的不错!
4.小结
大家都是爱学习得好孩子,最后谁能来说一说通过这节课你学会了什么?你说你学会了求梯形得面积,还有你来补充,哦你说梯形得面积公式是(上底+下底)x高÷2,你们说得都很好。
这节课我们主要通过动手操作得方式学习了梯形得面积,从而推导出梯形的面积公式,同时也学会了转化的思想。
5.作业
马上要下课了,现在老师来布置一下咱们的作业,请看大屏幕,请同学们课下完成课后习题1,2题,并利用所学得知识去解决生活中的问题吧。
人教版小学五年级数学教案 篇10
一、教学内容:
人教版五年级上册第62~63页“方程的意义”。
二、教学目标:
1.在具体的情境中理解方程的'含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。
2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
三、教学重、难点:
1.教学重点:理解并掌握方程的意义。
2.教学难点:建立“方程”的概念,并会应用。
四、教学过程:
(一)情境引入
今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)
(二)探究新知
1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)
请同学们仔细观察,在这副图里你获得了哪些信息?
师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。
2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)
3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?
师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)
师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100
4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200
师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300
师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。
5.观察比较:
50+50=100
100+x>100
100+x>200
100+x<300
100+x=250
总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。
像100+x=250这样,含有未知数的等式就是方程。
揭题:今天这节课我们学的就是“方程的意义”。(板书课题)
6.提问:这一个等式是方程吗?为什么?
追问:这两个式子里都含有未知数,它们是方程吗?
思考:你认为一个方程应该符合哪些条件?
(强调:方程既要是等式,又要含有未知数。)
(三)巩固练习
1.判断下面哪些式子是方程,并同桌说一说理由。
35+65=100 8-x=2 y+24
2.4=a×2 x-14>72 15÷b=3
5x+32=47 28<16+14 6(y+2)=42
2.下面哪些天平不能用方程表示?(出示6幅天平图)
用方程表示出剩下天平的数量关系。
(说一说天平两边的数量关系,列方程)
3.用方程表示下面的数量关系。(说数量关系,列方程)
先独立列出方程,再与同桌说一说方程表示的数量关系。
4.猜方程
让学生初步感知:方程一定是等式,等式不一定是方程。
5.写方程,编故事。
6.方程“史话”。
(四)课堂小结
今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?
人教版小学五年级数学教案 篇11
教学目标
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
教学重点:
发现解决这类问题的最佳策略。
教学难点:
理解并认可最佳策略的有效性。
教学过程
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
课件出示小组活动要求。
(1)把待测物品分成了几份?每份几个?
(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?
4.重点汇报8瓶的设计方案。
(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
人教版小学五年级数学教案 篇12
教学目标:
1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:
理解分数与除法的关系
教学难点:
会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题
教具准备:
课件
教学过程:
一、导入
1.出示情境图:把4块饼平均分给4个小朋友。
2.提问:你能提出哪些问题?
二、新课
1.教学例6
把刚才呈现的题目改为:把3块饼平均分给4个小朋友。
提问:你能提出什么问题?怎样列式?
引导:把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的.?
结合学生的回答,指出:每人分得的不满1块,结果可以用分数表示。
提出要求:那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
学生操作,了解学生是怎样分和怎样想的。
组织交流,你是怎么分的?
小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。
把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块? 学生口述算式
提问:3除以5,商是多少?怎样用分数表示?小组交流。
2. 总结归纳
谈话:请大家观察上面两个等式,你发现分数与除法有什么关系?
板书课题 被除数÷除数=被除数/除数
提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
板书 a÷b=a/b
讨论:b可以是0吗?
3. 教学试一试。
出示试一试,学生尝试填空。
小组交流:你是怎样想的?
口答:把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?
指出:两个数相除,得不到整数商时,可以用分数表示。
4. 做练一练的第1题 学生填写后,引导比较:上下两行题目有什么不同?
5. 练一练第2题 学生独立填写,要求说说填写时是怎样想的。
三、练习
1.练习八第1题
2.第2题
3.第3题学生看图填写后,可让学生说一说是怎样想的。
4.第4题
学生填写后,提问:这道题中的两个问题有什么不同?
5.第5题
让学生联系分数的意义填空,再引导学生根据分数与除法的关系列算式,并写出得数。
四、总结
提问:今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?