八年级数学函数教案

2023-08-11

八年级数学函数教案 篇1

  一、学情分析

  认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。

  活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

  二、教学目标:

  知识与技能目标:

  (1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。

  (2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。

  (3)会对一个具体实例进行概括抽象成为函数问题。

  过程与方法目标:

  (1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。

  (2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

  情感态度与价值观目标:

  (1)经历函数概念的抽象概括过程,体会函数的模型思想。

  (2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

八年级数学函数教案 篇2

  知识点2总体、个体、样本

  调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

  例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

  例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

  知识点3中位数的概念

  将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

  知识点4众数的概念

  一组数据中出现次数最多的数据就是这组数据的众数。

  例如:求一组数据3,2,3,5,3,1的众数。

  解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

  又如:求一组数据2,3,5,2,3,6的众数。

  解:这组数据中2出现2次,3出现2次,5,6各出现1次。

  所以这组数据的众数是2和3。

  【规律方法小结】

  (1)平均数、中位数、众数都是描述一组数据集中趋势的量。

  (2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

  (3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

  (4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

  探究交流

  1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

  解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

  总结:

  (1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

  (2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

  (3)中位数的单位与数据的单位相同。

  (4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

  课堂检测

  基本概念题

  1、填空题。

  (1)数据15,23,17,18,22的平均数是;

  (2)在某班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,则这个班学生的平均年龄约是_________;

  (3)某一学生5门学科考试成绩的平均分为86分,已知其中两门学科的总分为193分,则另外3门学科的分为________;

  (4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

  基础知识应用题

  2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

  (1)计算这10个班次乘车人数的平均数;

  (2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

八年级数学函数教案 篇3

  教学目标

  1.知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

  2.过程与方法

  经历探索一次函数的应用问题,发展抽象思维.

  3.情感、态度与价值观

  培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.

  重、难点与关键

  1.重点:一次函数的应用.

  2.难点:一次函数的应用.

  3.关键:从数形结合分析思路入手,提升应用思维.

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

  教学过程

  一、范例点击,应用所学

  例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

  y=

  例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

  拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习.

  三、课堂,发展潜能

  由学生自我本节课的表现.

  四、布置作业,专题突破

  课本P120习题14.2第9,10,11题.

  板书设计

  14.2.2一次函数(4)

  1、一次函数的应用例:

  练习:

八年级数学函数教案 篇4

  知识要点

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,

  相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。

  2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.

  3、正比例函数y=kx的性质

  (1)、正比例函数y=kx的图象都经过

  原点(0,0),(1,k)两点的一条直线;

  (2)、当k0时,图象都经过一、三象限;

  当k0时,图象都经过二、四象限

  (3)、当k0时,y随x的增大而增大;

  当k0时,y随x的增大而减小。

  4、一次函数y=kx+b的性质

  (1)、经过特殊点:与x轴的交点坐标是 ,

  与y轴的交点坐标是 .

  (2)、当k0时,y随x的增大而增大

  当k0时,y随x的增大而减小

  (3)、k值相同,图象是互相平行

  (4)、b值相同,图象相交于同一点(0,b)

  (5)、影响图象的两个因素是k和b

  ①k的正负决定直线的方向

  ②b的正负决定y轴交点在原点上方或下方

  5.五种类型一次函数解析式的确定

  确定一次函数的解析式,是一次函数学习的重要内容。

  (1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式

  例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

  解:把点(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函数的解析式为:y=3x-12

  (2)、根据直线经过两个点的坐标,确定函数的解析式

  例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),

  求函数的表达式。

  解:把点A(3,4)、点B(2,7)代入y=kx+b,得

  ,解得:

  函数的解析式为:y=-3x+13

  (3)、根据函数的图像,确定函数的解析式

  例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x

  (小时)之间的关系.求油箱里所剩油y(升)与行驶时间x

  (小时)之间的函数关系式,并且确定自变量x的取值范围。

  (4)、根据平移规律,确定函数的解析式

  例4、如图2,将直线 向上平移1个单位,得到一个一次

  函数的图像,那么这个一次函数的解析式是 .

  解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位

  后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,

  得 ,解得: ,函数的解析式为:y=2x+1

  (5)、根据直线的对称性,确定函数的解析式

  例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。

  例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。

  例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。

  经典训练:

  训练1:

  1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。

  (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?

  (2)若y是x的函数,试写出y与x之间的函数关系式 。

  训练2:

  1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函数有___ __;正比例函数有____________(填序号).

  2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )

  A.k1 B.k-1 C.k1 D.k为任意实数.

  3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.

  训练3:

  1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.

  2. 一次函数y=mx+n的图象如图,则下面正确的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.

  4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;

  若y随x的增大而增大,则k__________.

  5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  训练4:

  1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。

  4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  5、已知y-1与x成正比例,且 x=-2时,y=-4.

  (1)求出y与x之间的函数关系式;

  (2)当x=3时,求y的值.

  一、填空题(每题2分,共26分)

  1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .

  2、若直线 和直线 的交点坐标为 ,则 .

  3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .

  4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .

  5、函数 ,如果 ,那么 的取值范围是 .

  6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.

  7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .

  8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .

  9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .

  10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .

  11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.

  12、 为 时,直线 与直线 的交点在 轴上.

  13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .

  二、选择题(每题3分,共36分)

  14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )

  15、若直线 与 的交点在 轴上,那么 等于( )

  A.4 B.-4 C. D.

  16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )

  17、直线 如图5,则下列条件正确的是( )

  18、直线 经过点 , ,则必有( )

  A.

  19、如果 , ,则直线 不通过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是

  A. B. C. D.都不对

  21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )

  图6

  22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )

  A.4 B.5 C.6 D.7

  23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )

  A.1个 B.2个 C.3个 D.4个

  24、已知 ,那么 的图象一定不经过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )

  三、解答题(1~6题每题8分,7题10分,共58分)

  26、如图8,在直角坐标系内,一次函数 的`图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.

  27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?

  28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

  (1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.

  (2)在同一坐标系中,画出这三个函数的图象.

  29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

  (1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.

  (2)小王家第一季度交纳电费情况如下:

  月份 一月份 二月份 三月份 合计

  交费金额 76元 63元 45元6角 184元6角

  问小王家第一季度共用电多少度?

  30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.

  (1)求 与 之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]

  31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?

  32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)

  路程/千米 运费(元/吨、千米)

  甲库 乙库 甲库 乙库

  A地 20 15 12 12

  B地 25 20 10 8

  (1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).

  (2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?

八年级数学函数教案 篇5

  一、知识与技能

  1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  二、过程与方法

  1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.

  2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.

  三、情感态度与价值观

  1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.

  2、通过分组讨论,培养学生合作交流意识和探索精神.

  教学重点:理解和领会反比例函数的概念.

  教学难点:领悟反比例的概念.

  教学过程

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

  分析及解答:(1)

  ;(2)

  ;(3)

  其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

  上面的函数关系式,都具有

  的形式,其中k是常数.

  二、联系生活,丰富联想

  活动2

  下列问题中,变量间的对应关系可用这样的函数式表示?

  (1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;

  (2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

  (3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

  师生行为

  学生先独立思考,在进行全班交流.

  教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

  (1)能否从现实情境中抽象出两个变量的函数关系;

  (2)能否积极主动地参与小组活动;

  (3)能否比较深刻地领会函数、反比例函数的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果两个变量x,y之间的关系可以表示成

  的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

  活动3

  做一做:

  一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  师生行为:

  学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

  ①生能否理解反比例函数的意义,理解反比例函数的概念;

  ②学生能否顺利抽象反比例函数的模型;

  ③学生能否积极主动地合作、交流;

  活动4

  问题1:下列哪个等式中的y是x的反比例函数?

  问题2:已知y是x的反比例函数,当x=2时,y=6

  (1)写出y与x的函数关系式:

  (2)求当x=4时,y的值.

  师生行为:

  学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

  ①学生能否领会反比例函数的意义,理解反比例函数的概念;

  ②学生能否积极主动地参与小组活动.

  分析及解答:

  1、只有xy=123是反比例函数.

  2、分析:因为y是x的反比例函数,所以

  ,再把x=2和y=6代入上式就可求出常数k的值.

  解:(1)设

  ,因为x=2时,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、巩固提高

  活动5

  1、已知y是x的反比例函数,并且当x=3时,y=8.

  (1)写出y与x之间的函数关系式.

  (2)求y=2时x的值.

  2、y是x的反比例函数,下表给出了x与y的一些值:

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

  四、课时小结

  反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.