一元二次不等式教案 篇1
教学内容
3.2一元二次不等式及其解法
三维目标
一、知识与技能
1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;
2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;
3.会用列表法,进一步用数轴标根法求解分式及高次不等式;
4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;
2.发挥学生的主体作用,作好探究性教学;
3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.进一步提高学生的运算能力和思维能力;
2.培养学生分析问题和解决问题的能力;
3.强化学生应用转化的数学思想和分类讨论的数学思想.
教学重点
1.从实际问题中抽象出一元二次不等式模型.
2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.
教学难点
1.深入理解二次函数、一元二次方程与一元二次不等式的关系.
教学方法
启发、探究式教学
教学过程
复习引入
师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。
生:略
师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
学生自己讨论
点题,板书课题
新课学习
1.一元二次不等式
只有一个未知数,并且未知数的最高次数是2的不等式。
2.三个“二次”之间的关系及一元二次不等式的解法
师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。
生略
师学生讨论归纳出解一元二次不等式的步骤
一看:看二次项系数的正负,并且变形为
二算:,判断正负,有根则求并画出对应的函数图象
三写:写出原不等式的解集
练习反馈
[例题剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
课本80页练习
例2已知不等式的解集为试解不等式
变式:
已知
课堂
小结
1.三个“二次的关系”
2.解二次不等式的步骤
作业布置
课本第80页习题3.2A组第1.2.4题B组1
练习调配
设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、
一元二次不等式教案 篇2
解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。
若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。
2.解简单一元高次不等式
a.化为标准型。
b.将不等式分解成若干个因式的积。
c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。
3.解分式不等式的解
a.化为标准型。
b.可将分式化为整式,将整式分解成若干个因式的积。
c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)
4.解含参数的一元二次不等式
a.对二次项系数a的讨论。
若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。
b.对判别式△的讨论
若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。
c.对根大小的讨论
若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布问题
a.将方程化为标准型。(a的符号)
b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。
若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。
6.一元二次不等式的应用
⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)
a.对二次项系数a的符号进行讨论,分为a=0与a≠0。
b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。
a≠0时,则转化为二次函数图像全在x轴上方或下方。
若f(x)>0,则要求a>0,△<0。
若f(x)<0,则要求a<0,△<0。
⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。
b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。
c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。
d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。
一元二次不等式教案 篇3
一、教学目标
【知识与技能】
掌握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。
【过程与方法】
在探究一元二次不等式的解法的过程中,提升逻辑推理能力。
【情感、态度与价值观】
感受数学知识的前后联系,提升学习数学的热情。
二、教学重难点
【重点】一元二次不等式的解法。
【难点】一元二次不等式的解法的探究过程。
三、教学过程
(一)导入新课
回顾一元二次不等式的一般形式,组织学生举例一些简单的一元二次不等式。
提问:如何求解?引出课题。
(二)讲解新知
结合课前回顾的一元二次不等式的一般形式,对比之前所学内容,引导学生发现其与一元二次方程和二次函数的共同特点。