一元一次不等式第一课时说课稿(精选3篇)
一元一次不等式第一课时说课稿 篇1
一、 说教学目标
1. 了解一元一次不等式的概念;
2. 会解一元一次不等式。
3.通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
4.培养学生理论联系实际的思维能力及总结概括能。
基于对数学新课程标准的理解,数学是研究数量关系和变化规律的数学模型,可以帮助学生从数量关系的角度更准确、清晰地认识、描述和把握现实世界,体会数学思想,发展学生的思维水平。本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,
基于教学大纲和新课程标准的要求,本章的结构和教学内容分析,结合七年级学生的认知发展水平和心理特点,
基于对学情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
综上所述,我将本节课的教学重点确定:会解一元一次不等式。教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;
二、说教法、学法
数学新课程标准指出,数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了复习导入法、演示法、讲解法、类比法。
一元一次不等式教学反思(通用3篇)
一元一次不等式教学反思 篇1
初中数学一元一次不等式教学反思篇一
本章学习的一元一次不等式的解法及其应用,是中学数学的重要内容,和一元一次方程相似,对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。我们认为这一章的主干是解一元一次不等式及一元一次不等式组,所以在讲课的时候就绕开不等式及不等式的解等定义,直奔主题。
本章通过对一个实际问题的数量关系的分析,引入不等式的概念,让学生初步了解解不等式及其解的意义。这样的引入能结合生活实际,虽好,但对一个实际问题转化为一个数学问题进行分析,要求学生要有比较好的理解能力,因此,我们老师认为不适合我校学生的实际。直接由文字表述的数量关系列出不等式引入。
第一节课是一元一次不等式的解法,由于一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前老师先口头复习了等式的性质,然后通过对两个不等式“7>5”、“―7<―5”左右两边同时加上、减去、乘以、除以某一个相同有数,让学生自己归纳出不等式的性质,同时和前面刚复习的等式的性质比较,对比掌握。类比一元一次方程的解法学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后系数化为1不同,其它的步骤是相同的,强调最后一步“负变,正不变”。学生掌握得很好。并在这一节重视用数轴表示不等式的解集。
8.2解一元一次不等式②(通用2篇)
8.2解一元一次不等式② 篇1
教学目标:1、 使学生熟练掌握一元一次不等式的解法;2、 掌握在指定数集内解一元一次不等式;3、 重点掌握一元一次不等式的简单运用。教学过程:一、 复习练习:1、 提问:什么叫一元一次不等式?解一元一次不等式的一般步骤是什么?2、 解下列不等式(学生板演):① 3(x-2)-4(1-x)>4② 3- > +1 ③ - ≤ -1④ +1> 3、提问:最小的整数是 ,最大的负整数是 ,最小的非负整数是 。 最小的自然数是 ,绝对值最小的整数,小于5的非负整数是 。二、 新课探究:例1、 解不等式,并把他们的解集在数轴上表示出来;< 若把本题改为求不等式的负整数解呢?学生练习:求下列不等式的负整数解;① ② ③ 求不等式 的负整数解。三、 能力拓展:例2、 已知关于x的方程 = 的解是负数,求字母 的取值范围;例3、 已知不等式 的最小整数解为方程 的解,求代数式 的值。四、 延伸与提高:例4、 某次“人与自然”的知识竟赛中共有20道题。每答对一题得10分,答错了或不答扣5分,至少要答对多少题其得分不少于80分?学生练习:一个工程队原定在10天内至少挖掘600m3的土方,在前两天共完成120 m3后,又要求提前2天完成任务,问以后几天内平均每天要挖多少土方?五、课时作业 手册p72 a 组、b组。
一元一次不等式和它的解法(通用7篇)
一元一次不等式和它的解法 篇1
教学建议
一、知识结构
二、重点难点分析
本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.
1﹒一元一次不等式和一元一次方程概念的异同点
相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.
(3)同方程类似,我们把 或 叫做一元一次不等式的标准形式.
2﹒一元一次不等式和一元一次方程解法的异同点
相同点:步骤相同,二者都是经过变形,把左边变成 ,右边变为一个常数.
不同点:在进行第(1)步去分母和第(5)步将 项的系数化为1的变形时,要根据同乘(或同除)的数的正负,决定是否要改变不等号的方向.当然,如果不能确定同乘(或同除)的数的符号时,就要进行讨论.这正是解不等式时最容易发生错误的地方.
注意:(1)解方程的移项法则对解不等式同样适用.
(2)解不等式时,上述的五个步骤不一定都能用到,并且也不一定按照自上而百的顺序,要根据不等式形式灵活安排求解步骤.熟练后,步骤及检验还可以合并简化.
三、教法建议
在讲一元一次不等式的解法时,应突出抓住与方程解法不同的地方,加强“去分母”和“系数化成l”这两个步骤的训练,因为这两个步骤会出现“在不等式两边都乘以(或除以)同一个负数,不等号的方向改变”的情况,为此可以同一元一次方程对照着讲.
解不等式的过程就是将不等式进行同解变形的过程,这也是一种运算.新大纲规定:“运算能力包括会根据法则公式等正确地进行运算,理解运算的算理,能根据题目条件寻求合理,简捷的运算途径.”要培养解不等式的能力首先要使学生理解和掌握算理,即掌握不等式的基本性质,正确理解不等式、不等式的解集等有关概念.
这节课是在复习一元一次方程的基本思想和步骤中学习解一元一次不等式的.要突出不等式基本性质3,这是解不等式容易出错的地方.同时还要反复提醒同学注意克服解方程变形中常犯的错误,在解不等式中 也要重现.
(一)
一、素质教育
9.2 实际问题与一元一次不等式(通用7篇)
9.2 实际问题与一元一次不等式 篇1
9.2 实际问题与一元一次不等式(2)
教学目标 1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;
2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;
3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.
教学难点 在实际问题中如何建立不等关系,并根据不等关系列出不等式。
知识重点 列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。
教学过程(师生活动) 设计理念
复习巩固 解下列不等式:
①5x+54<x-1 ②2(1一3x) > 3x+20
③2(一3+x)< 3(x+2)
④ (x+5)<3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法. 让学生在解题过程中有目的地思考,既可巩固已学内容,又为下面的新课做好铺垫。
提出问题 XX年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到XX年这样的比值要超过70%,那么,XX年北京空气质量良好(二级以上)的天数至少要增加多少天? 选择学生感兴趣的问题,可以激发学习热情,此题既承上启下,又能增强学生的应用意识。
实际问题与一元一次不等式导学案
9.2.1实际问题与一元一次不等式
[学习目标]
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系.
[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
[学习难点]寻找实际问题中的不等关系,建立数学模型.
[学习过程]
一、 春耕
1. 不等式的基本性质有哪些?
2、解下列不等式,并把解集在数轴上表示出来
(1)3x<2x+1; (2)-4 x >3.
.二、夏耘:
例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.