最新高一数学教案

2023-07-27

最新高一数学教案 篇1

  [三维目标]

  一、知识与技能:

  1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系

  2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想

  3、了解集合元素个数问题的讨论说明

  二、过程与方法

  通过提问汇总练习提炼的形式来发掘学生学习方法

  三、情感态度与价值观

  培养学生系统化及创造性的思维

  [教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪

  [教学方法]:讲练结合法

  [授课类型]:复习课

  [课时安排]:1课时

  [教学过程]:集合部分汇总

  本单元主要介绍了以下三个问题:

  1,集合的含义与特征

  2,集合的表示与转化

  3,集合的基本运算

  一,集合的含义与表示(含分类)

  1,具有共同特征的对象的全体,称一个集合

  2,集合按元素的个数分为:有限集和无穷集两类

最新高一数学教案 篇2

  经典例题

  已知关于 的方程 的实数解在区间 ,求 的取值范围。

  反思提炼:1.常见的四种指数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  (4)方程 的解法:

  2.常见的三种对数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  3.方程与函数之间的转化。

  4.通过数形结合解决方程有无根的问题。

  课后作业:

  1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是

  [答案] 2n+1-2

  [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

  f ′(2)=-n2n-1-2n=(-n-2)2n-1.

  在点x=2处点的`纵坐标为=-2n.

  ∴切线方程为+2n=(-n-2)2n-1(x-2).

  令x=0得,=(n+1)2n,

  ∴an=(n+1)2n,

  ∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

  2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________

  解析:设 则 ,过点P作 的垂线

  ,所以,t在 上单调增,在 单调减, 。

最新高一数学教案 篇3

  教学目标:

  1、理解对数的概念,能够进行对数式与指数式的互化;

  2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。

  教学重点:

  对数的`概念

  教学过程:

  一、问题情境:

  1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺?

  (2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、问题:已知底数和幂的值,如何求指数?你能看得出来吗?

  二、学生活动:

  1、讨论问题,探究求法、

  2、概括内容,总结对数概念、

  3、研究指数与对数的关系、

  三、建构数学:

  1)引导学生自己总结并给出对数的概念、

  2)介绍对数的表示方法,底数、真数的含义、

  3)指数式与对数式的关系、

  4)常用对数与自然对数、

  探究:

  ⑴负数与零没有对数、

  ⑵,、

  ⑶对数恒等式(教材P58练习6)

  ①;②、

  ⑷两种对数:

  ①常用对数:;

  ②自然对数:、

  (5)底数的取值范围为;真数的取值范围为、

  四、数学运用:

  1、例题:

  例1、(教材P57例1)将下列指数式改写成对数式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)将下列对数式改写成指数式:

  (1);(2)3=—2;(3);(4)(补充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

  ⑴;⑵;⑶(补充)、

  2、练习:

  P58(练习)1,2,3,4,5、

  五、回顾小结:

  本节课学习了以下内容:

  ⑴对数的定义;

  ⑵指数式与对数式互换;

  ⑶求对数式的值(利用计算器求对数值)、

  六、课外作业:P63习题1,2,3,4、

最新高一数学教案 篇4

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

最新高一数学教案 篇5

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

最新高一数学教案 篇6

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学生状况分析

  本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

  教材简析

  使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。

  必修1,主要涉及两章内容:

  第一章 集合

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;新-课-标-第-一-网

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的'关系等数学知识的过程中,培养学生的思维能力。

  第二章 函数的概念与基本初等函数Ⅰ

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4,主要涉及三章内容:

  第一章 三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章 平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章 三角恒等变换

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

  1.掌握两角和与差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式 ;

  3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

  三、教学任务

  本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。

  四、教学质量目标新 课 标

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  五、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。

  加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

  6、重视数学应用意识及应用能力的培养。

  7、加强学生良好学习习惯的培养

  六、教学时间大致安排

  集合与函数概念 13 课时

  基本初等函数 15

  课时

  函数的应用 8

  课时

  三角函数 24

  课时

  平面向量 14

  课时

  三角恒等变换 9

  课时

最新高一数学教案 篇7

  教学目标:

  使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

  教学重点:

  函数的概念,函数定义域的求法.

  教学难点:

  函数概念的理解.

  教学过程:

  Ⅰ.课题导入

  [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

  (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

  设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

  [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

  问题一:y=1(xR)是函数吗?

  问题二:y=x与y=x2x 是同一个函数吗?

  (学生思考,很难回答)

  [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

  Ⅱ.讲授新课

  [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

  在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

  在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

  在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

  请同学们观察3个对应,它们分别是怎样形式的对应呢?

  [生]一对一、二对一、一对一.

  [师]这3个对应的共同特点是什么呢?

  [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

  [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

  现在我们把函数的概念进一步叙述如下:(板书)

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.

  记作:y=f(x),xA

  其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.

  一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.

  反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.

  二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.

  函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

  y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

  Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

  [师]理解函数的定义,我们应该注意些什么呢?

  (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

  注意:①函数是非空数集到非空数集上的一种对应.

  ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

  ③集合A中数的任意性,集合B中数的惟一性.

  ④f表示对应关系,在不同的函数中,f的具体含义不一样.

  ⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

  [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

  Ⅲ.例题分析

  [例1]求下列函数的定义域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

  解:(1)x-20,即x2时,1x-2 有意义

  这个函数的定义域是{x|x2}

  (2)3x+20,即x-23 时3x+2 有意义

  函数y=3x+2 的定义域是[-23 ,+)

  (3) x+10 x2

  这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函数的定义域可用三种方法表示:不等式、集合、区间.

  从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

  (1)如果f(x)是整式,那么函数的定义域是实数集R;

  (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

  (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的'交集);

  (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

  例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

  由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

  [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

  下面我们来看求函数式的值应该怎样进行呢?

  [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

  [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

  [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

  [师]生乙的回答完整吗?

  [生]完整!(课本上就是如生乙所述那样写的).

  [师]大家说,判定两个函数是否相同的依据是什么?

  [生]函数的定义.

  [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

  (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

  (无人回答)

  [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

  (生恍然大悟,我们怎么就没想到呢?)

  [例2]求下列函数的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

  对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

  对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)画出y=x2+4x+3(-31)的图象,如图所示,

  当x[-3,1]时,得y[-1,8]

  Ⅳ.课堂练习

  课本P24练习17.

  Ⅴ.课时小结

  本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

  Ⅵ.课后作业

  课本P28,习题1、2. 文 章来

最新高一数学教案 篇8

  学习目标

  1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

  2、掌握标准方程中的几何意义

  3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

  一、预习检查

  1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

  2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

  3、双曲线的渐进线方程为、

  4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

  二、问题探究

  探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

  探究2、双曲线与其渐近线具有怎样的关系、

  练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

  例1根据以下条件,分别求出双曲线的标准方程、

  (1)过点,离心率、

  (2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

  例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、

  例3(理)求离心率为,且过点的双曲线标准方程、

  三、思维训练

  1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、

  2、椭圆的离心率为,则双曲线的离心率为、

  3、双曲线的渐进线方程是,则双曲线的离心率等于=、

  4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、

  四、知识巩固

  1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、

  2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、

  3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、

  4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

  5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、

最新高一数学教案 篇9

  一、课标要求:

  理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

  二、知识与方法回顾:

  1、充分条件、必要条件与充要条件的概念:

  2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

  3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

  4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

  5、化归思想:

  表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

  这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

  6、数形结合思想:

  利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

  三、基础训练:

  1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 若 是实数,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  四、例题讲解

  例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

  (1) 是这个方程有实根的充分不必要条件

  (2) 是这个方程有实根的必要不充分条件

  (3) 是这个方程有实根的充要条件

  (4) 是这个方程有实根的充分不必要条件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

  (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  变式:a = 0是直线 与 平行的 条件;

  例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

  的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

  例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

  例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

  五、课堂练习

  1、设命题p: ,命题q: ,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

  ④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

  3、是否存在实数p,使 是 的充分条件?若存在,求出p的`取值范围;若不存在说明理由.

  六、课堂小结:

  七、教学后记:

  高三 班 学号 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 2x2-5x-30的一个必要不充分条件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分又不必要条件

  6、若命题A: ,命题B: ,则命题A是B的 条件;

  7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

  8、方程mx2+2x+1=0至少有一个负根的充要条件是 ;

  9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

  10、已知 ,求证: 的充要条件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

  12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有两个正根的充要条件;

  (2)方程至少有一正根的充要条件.

最新高一数学教案 篇10

  案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

  三.拓展练习

  练习:若 ,求 的取值范围.

  四.小结及作业

  案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

最新高一数学教案 篇11

  教材:逻辑联结词

  目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

  过程

  一、提出课题:简单逻辑、逻辑联结词

  二、命题的概念:

  例:125 ① 3是12的约数 ② 0.5是整数 ③

  定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

  如:①②是真命题,③是假命题

  反例:3是12的约数吗? x5 都不是命题

  不涉及真假(问题) 无法判断真假

  上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

  三、复合命题:

  1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

  垂直且平分⑤ 对角线互相平分

  (3)0.5非整数⑥ 非0.5是整数

  观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

  3.其实,有些概念前面已遇到过

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、复合命题的构成形式

  如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

  即: p或q (如 ④) 记作 pq

  p且q (如 ⑤) 记作 pq

  非p (命题的否定) (如 ⑥) 记作 p

  小结:1.命题 2.复合命题 3.复合命题的构成形式

最新高一数学教案 篇12

  【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

  本文题目:空间几何体的三视图和直观图高一数学教案

  第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

  教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

  教学重点:画出三视图、识别三视图.

  教学难点:识别三视图所表示的空间几何体.

  教学过程:

  一、新课导入:

  1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

  2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

  三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

  直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

  用途:工程建设、机械制造、日常生活.

  二、讲授新课:

  1. 教学中心投影与平行投影:

  ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的'方法。

  ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

  ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

  讨论:点、线、三角形在平行投影后的结果.

  2. 教学柱、锥、台、球的三视图:

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

  讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

  结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.

  ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

  ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

  正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

  (试变化以上的三视图,说出相应几何体的摆放)

  3. 教学简单组合体的三视图:

  ① 画出教材P16 图(2)、(3)、(4)的三视图.

  ② 从教材P16思考中三视图,说出几何体.

  4. 练习:

  ① 画出正四棱锥的三视图.

  画出右图所示几何体的三视图.

  ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

  5. 小结:投影法;三视图;顺与逆

  三、巩固练习: 练习:教材P17 1、2、3、4

  第二课时 1.2.3 空间几何体的直观图

  教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

  教学重点:画出直观图.

最新高一数学教案 篇13

  一、本课数学内容的本质、地位、作用分析

  普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

  函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

  二、教学目标分析

  本节内容包含三大知识点:

  一、函数零点的定义;

  二、方程的根与函数零点的等价关系;

  三、零点存在性定理。

  结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:

  1.结合方程根的几何意义,理解函数零点的定义;

  2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.

  本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

  结合本节课教学主线的设计,设定本节课的过程与方法目标如下:

  1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

  2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;

  3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

  4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

  由于本节课将以教师引导,学生探究为主体形式,故设定本节课的情感、态度与价值观目标如下:

  1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

  3.使学生感受学习、探索发现的乐趣与成功感。

  三、教学问题诊断

  学生具备的认知基础:

  1.基本初等函数的图象和性质;

  2.一元二次方程的根和相应函数图象与x轴的联系;

  3.将数与形相结合转化的意识。

  学生欠缺的实际能力:

  1.主动应用数形结合思想解决问题的意识还不强;

  2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;

  3.从直观到抽象的概括总结能力还不够;

  4.概念的内涵与外延的探究意识有待提高。

  对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。

  教材是通过由直观到抽象的过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。

  教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。

  四、本节课的教法特点以及预期效果分析

  本节课教法的几大特点总结如下:

  1.以问题为主线贯穿始终;

  2.精心设置引导性的语言放手让学生探究;

  3.注重在引导学生探究问题解法的过程中渗透数学思想;

  4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。

  由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;

  由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;

  因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;

  因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。

最新高一数学教案 篇14

  教学目标

  会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

  重 点

  函数单调性的证明及判断。

  难 点

  函数单调性证明及其应用。

  一、复习引入

  1、函数的定义域、值域、图象、表示方法

  2、函数单调性

  (1)单调增函数

  (2)单调减函数

  (3)单调区间

  二、例题分析

  例1、画出下列函数图象,并写出单调区间:

  (1) (2) (2)

  例2、求证:函数 在区间 上是单调增函数。

  例3、讨论函数 的单调性,并证明你的结论。

  变(1)讨论函数 的单调性,并证明你的结论

  变(2)讨论函数 的单调性,并证明你的结论。

  例4、试判断函数 在 上的单调性。

  三、随堂练习

  1、判断下列说法正确的是 。

  (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

  (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

  (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

  (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。

  2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函数 在 上是___ ___;函数 在 上是__ _____。

  3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

  4、求证:函数 是定义域上的单调减函数。

  四、回顾小结

  1、函数单调性的判断及证明。

  课后作业

  一、基础题

  1、求下列函数的单调区间

  (1) (2)

  2、画函数 的图象,并写出单调区间。

  二、提高题

  3、求证:函数 在 上是单调增函数。

  4、若函数 ,求函数 的单调区间。

  5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

  三、能力题

  6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

  变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。