高一数学教案

2023-09-01

高一数学教案 篇1

  教材:逻辑联结词

  目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

  过程

  一、提出课题:简单逻辑、逻辑联结词

  二、命题的概念:

  例:125 ① 3是12的约数 ② 0.5是整数 ③

  定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

  如:①②是真命题,③是假命题

  反例:3是12的约数吗? x5 都不是命题

  不涉及真假(问题) 无法判断真假

  上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

  三、复合命题:

  1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

  垂直且平分⑤ 对角线互相平分

  (3)0.5非整数⑥ 非0.5是整数

  观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

  3.其实,有些概念前面已遇到过

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、复合命题的构成形式

  如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

  即: p或q (如 ④) 记作 pq

  p且q (如 ⑤) 记作 pq

  非p (命题的否定) (如 ⑥) 记作 p

  小结:1.命题 2.复合命题 3.复合命题的构成形式

高一数学教案 篇2

  教学目标:

  (1)了解集合的表示方法;

  (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:掌握集合的表示方法;

  教学难点:选择恰当的表示方法;

  教学过程:

  一、复习回顾:

  1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

  二、新课教学

  (一).集合的表示方法

  我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

  虑元素的顺序。

  2.各个元素之间要用逗号隔开;

  3.元素不能重复;

  4.集合中的元素可以数,点,代数式等;

  5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

  例1.(课本例1)用列举法表示下列集合:

  (1)小于10的所有自然数组成的集合;

  (2)方程x2=x的所有实数根组成的'集合;

  (3)由1到20以内的所有质数组成的集合;

  (4)方程组 的解组成的集合。

  思考2:(课本P4的思考题)得出描述法的定义:

  (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

  具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  说明:

  1.课本P5最后一段话;

  2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  例2.(课本例2)试分别用列举法和描述法表示下列集合:

  (1)方程x2—2=0的所有实数根组成的集合;

  (2)由大于10小于20的所有整数组成的集合;

  (3)方程组 的解。

  思考3:(课本P6思考)

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (二).课堂练习:

  1.课本P6练习2;

  2.用适当的方法表示集合:大于0的所有奇数

  3.集合A={x| ∈Z,x∈N},则它的元素是 。

  4.已知集合A={x|-3

  归纳小结:

  本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

  作业布置:

  1. 习题1.1,第3.4题;

  2. 课后预习集合间的基本关系.

高一数学教案 篇3

  一、教学目标

  1.知识与技能

  (1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

  (2)体会程序化解决问题的思想,为算法的学习作准备。

  2.过程与方法

  (1)让学生在求解方程近似解的实例中感知二分发思想;

  (2)让学生归纳整理本节所学的知识。

  3.情感、态度与价值观

  ①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

  ②培养学生认真、耐心、严谨的数学品质。

  二、 教学重点、难点

  重点:用二分法求解函数f(x)的零点近似值的步骤。

  难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?

  三、 学法与教学用具

  1.想-想。

  2.教学用具:计算器。

  四、教学设想

  (一)、创设情景,揭示课题

  提出问题:

  (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的'根呢?

  (2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

  (二)、研讨新知

  一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

  取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;

  再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;

  由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

  这种求零点近似值的方法叫做二分法。

  1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

  生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

  2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?

  先由学生思考几分钟,然后作如下说明:

  设函数零点为x0,则a<x0<b,则:

  0<x0-a<b-a,a-b<x0-b<0;

  由于︱a - b ︳<,所以

  ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

  即a或b 作为零点x0的近似值都达到了给定的精确度。

  (三)、巩固深化,发展思维

  1.学生在老师引导启发下完成下面的例题

  例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)

  问题:原方程的近似解和哪个函数的零点是等价的?

  师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

  生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

  (四)、归纳整理,整体认识

  在师生的互动中,让学生了解或体会下列问题:

  (1)本节我们学过哪些知识内容?

  (2)你认为学习“二分法”有什么意义?

  (3)在本节课的学习过程中,还有哪些不明白的地方?

  (五)、布置作业

  P92习题3.1A组第四题,第五题。

高一数学教案 篇4

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

高一数学教案 篇5

  【学习目标】

  1、感受数学探索的成功感,提高学习数学的兴趣;

  2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。

  3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。

  【学习重点】三角函数的诱导公式的理解与应用

  【学习难点】诱导公式的推导及灵活运用

  【知识链接】(1)单位圆中任意角α的正弦、余弦的定义

  (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标

  【学习过程】

  一、预习自学

  阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的'定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:

  (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  二、合作探究

  探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。

  (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°);

  探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)

  探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。

  三、学习小结

  (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?

  (2)本节学习涉及到什么数学思想方法?

  (3)我的疑惑有

  【达标检测】

  1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),

  则sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函数值:

  (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,则α的集合S=

高一数学教案 篇6

  知识结构

  重难点分析

  本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

  本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

  教法建议

  1.性质的引入方法很多,以下2种比较常用:

  (1)设计问题引导启发:由设计的问题

  1)、各等于什么?

  2)、各等于什么?

  启发、引导学生猜想出

  (2)从算术平方根的意义引入.

  2.性质的巩固有两个方面需要注意:

  (1)注意与性质进行对比,可出几道类型不同的题进行比较;

  (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

  (第1课时)

  一、教学目标

  1.掌握二次根式的性质

  2.能够利用二次根式的性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教B具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学过程

  一、导入新课

  我们知道,式子表示非负数的算术平方根.

  问:式子的意义是什么?被开方数中的表示的是什么数?

  答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

  二、新课

  计算下列各题,并回答以下问题:

  (1);(2);(3);

  1.各小题中被开方数的幂的底数都是什么数?

  2.各小题的结果和相应的被开方数的幂的底数有什么关系?

  3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

高一数学教案 篇7

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

高一数学教案 篇8

  学习目标

  1.能根据抛物线的定义建立抛物线的标准方程;

  2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

  3.会求抛物线的标准方程。

  一、预习检查

  1.完成下表:

  标准方程

  图形

  焦点坐标

  准线方程

  开口方向

  2.求抛物线的焦点坐标和准线方程.

  3.求经过点的抛物线的标准方程.

  二、问题探究

  探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

  探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

  例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

  例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的`距离是5,求的值及抛物线的标准方程,准线方程.

  例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

  三、思维训练

  1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

  2.抛物线的焦点到其准线的距离是.

  3.设为抛物线的焦点,为该抛物线上三点,若,则=.

  4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

  5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

  四、课后巩固

  1.抛物线的准线方程是.

  2.抛物线上一点到焦点的距离为,则点到轴的距离为.

  3.已知抛物线,焦点到准线的距离为,则.

  4.经过点的抛物线的标准方程为.

  5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

  6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

  7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案 篇9

  【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

  本文题目:空间几何体的三视图和直观图高一数学教案

  第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

  教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

  教学重点:画出三视图、识别三视图.

  教学难点:识别三视图所表示的空间几何体.

  教学过程:

  一、新课导入:

  1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

  2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

  三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

  直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

  用途:工程建设、机械制造、日常生活.

  二、讲授新课:

  1. 教学中心投影与平行投影:

  ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的'方法。

  ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

  ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

  讨论:点、线、三角形在平行投影后的结果.

  2. 教学柱、锥、台、球的三视图:

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

  讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

  结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.

  ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

  ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

  正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

  (试变化以上的三视图,说出相应几何体的摆放)

  3. 教学简单组合体的三视图:

  ① 画出教材P16 图(2)、(3)、(4)的三视图.

  ② 从教材P16思考中三视图,说出几何体.

  4. 练习:

  ① 画出正四棱锥的三视图.

  画出右图所示几何体的三视图.

  ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

  5. 小结:投影法;三视图;顺与逆

  三、巩固练习: 练习:教材P17 1、2、3、4

  第二课时 1.2.3 空间几何体的直观图

  教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

  教学重点:画出直观图.

高一数学教案 篇10

  一:【课前预习】

  (一):【知识梳理】

  1.直角三角形的边角关系(如图)

  (1)边的关系(勾股定理):AC2+BC2=AB2;

  (2)角的关系:B=

  (3)边角关系:

  ①:

  ②:锐角三角函数:

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函数值是一个比值.

  2.特殊角的三角函数值.

  3.三角函数的关系

  (1) 互为余角的三角函数关系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函数关系.

  平方关系:sin2 A+cos2A=l

  4.三角函数的大小比较

  ①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.

  ②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。

  (二):【课前练习】

  1.等腰直角三角形一个锐角的余弦为( )

  A. D.l

  2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

  3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

  4.已知A为锐角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【经典考题剖析】

  1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.

  2.先化简,再求其值, 其中x=tan45-cos30

  3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比较大小(在空格处填写或或=)

  若=45○,则sin________cos

  若45○,则sin cos

  若45,则 sin cos.

  5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;

  ⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.

  三:【课后训练】

  1. 2sin60-cos30tan45的结果为( )

  A. D.0

  2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

  A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

  3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

  4.cos2+sin242○ =1,则锐角=______.

  5.在下列不等式中,错误的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是

  7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.

  8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

  9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)

  10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)

高一数学教案 篇11

  一、学习目标:

  知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题

  过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理

  情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法

  二、学习重、难点

  学习重点: 直线与平面、平面与平面平行的性质及其应用

  学习难点: 将空间问题转化为平面问题的方法,

  三、学法指导及要求:

  1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

  2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题

  四、知识链接:

  1.空间直线与直线的位置关系

  2.直线与平面的位置关系

  3.平面与平面的位置关系

  4.直线与平面平行的判定定理的符号表示

  5.平面与平面平行的判定定理的符号表示

  五、学习过程:

  A问题1:

  1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?

  (观察长方体)

  2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?

  (可观察教室内灯管和地面)

  A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?

  A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?

  由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线

  B自主探究1:已知: ∥, ,=b。求证: ∥b。

  直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行

  符号语言:

  线面平行性质定理作用:证明两直线平行

  思想:线面平行 线线平行

  例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?

  例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。

  问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?

  自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b

  平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行

  符号语言:

  面面平行性质定理作用:证明两直线平行

  思想:面面平行 线线平行

  例3 求证:夹在两个平行平面间的平行线段相等

  六、达标检测:

  A1.61页练习

  A2.下列判断正确的是( )

  A. ∥, ,则 ∥b B. =P,b ,则 与b不平行

  C. ,则a∥ D. ∥,b∥,则 ∥b

  B3.直线 ∥平面,P,过点P平行于 的直线( )

  A.只有一条,不在平面内 B.有无数条,不一定在内

  C.只有一条,且在平面内 D.有无数条,一定在内

  B4.下列命题错误的是 ( )

  A. 平行于同一条直线的两个平面平行或相交

  B. 平行于同一个平面的两个平面平行

  C. 平行于同一条直线的两条直线平行

  D. 平行于同一个平面的两条直线平行或相交

  B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )

  A. EH∥BD,BD不平行与FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,FG∥BD

  D. 以上都不对

  B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是

  B7一个平面上有两点到另一个平面的距离相等,则这两个平面

  七、小结与反思:

高一数学教案 篇12

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案 篇13

  教学目标:

  1、理解对数的概念,能够进行对数式与指数式的互化;

  2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。

  教学重点:

  对数的`概念

  教学过程:

  一、问题情境:

  1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺?

  (2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、问题:已知底数和幂的值,如何求指数?你能看得出来吗?

  二、学生活动:

  1、讨论问题,探究求法、

  2、概括内容,总结对数概念、

  3、研究指数与对数的关系、

  三、建构数学:

  1)引导学生自己总结并给出对数的概念、

  2)介绍对数的表示方法,底数、真数的含义、

  3)指数式与对数式的关系、

  4)常用对数与自然对数、

  探究:

  ⑴负数与零没有对数、

  ⑵,、

  ⑶对数恒等式(教材P58练习6)

  ①;②、

  ⑷两种对数:

  ①常用对数:;

  ②自然对数:、

  (5)底数的取值范围为;真数的取值范围为、

  四、数学运用:

  1、例题:

  例1、(教材P57例1)将下列指数式改写成对数式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)将下列对数式改写成指数式:

  (1);(2)3=—2;(3);(4)(补充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

  ⑴;⑵;⑶(补充)、

  2、练习:

  P58(练习)1,2,3,4,5、

  五、回顾小结:

  本节课学习了以下内容:

  ⑴对数的定义;

  ⑵指数式与对数式互换;

  ⑶求对数式的值(利用计算器求对数值)、

  六、课外作业:P63习题1,2,3,4、

高一数学教案 篇14

  一、教材

  首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。

  二、学情

  教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握两条直线平行与垂直的'判定,能够根据其判定两条直线的位置关系。

  (二)过程与方法

  在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。

  (三)情感态度价值观

  在猜想论证的过程中,体会数学的严谨性。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。

  五、教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?

  利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

高一数学教案 篇15

  [教学重、难点]

  认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

  [教学准备]

  学生、老师剪下附页2中的图2。

  [教学过程]

  一、画一画,说一说

  1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

  2、教师巡查练习情况。

  3、学生展示练习,说一说为什么是锐角、直角、钝角?

  二、分一分

  1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?

  2、汇报:分类的标准和方法。可以按角来分,可以按边来分。

  二、按角分类:

  1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。

  2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形

  3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

  三、按边分类:

  1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。

  2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?

  四、填一填:

  24、25页让学生辨认各种三角形。

  五、练一练:

  第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。

  第2题:在点子图上画三角形第3题:剪一剪。

  六、完成26页实践活动。