高中数学试讲教案

2023-07-21

高中数学试讲教案 篇1

  教学准备

  教学目标

  运用充分条件、必要条件和充要条件

  教学重难点

  运用充分条件、必要条件和充要条件

  教学过程

  一、基础知识

  (一)充分条件、必要条件和充要条件

  1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

  2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。

  3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

  (二)充要条件的`判断

  1若成立则A是B成立的充分条件,B是A成立的必要条件。

  2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。

  3.若成立则A、B互为充要条件。

  证明A是B的充要条件,分两步:__

  (1)充分性:把A当作已知条件,结合命题的前提条件推出B;

  (2)必要性:把B当作已知条件,结合命题的前提条件推出A。

  二、范例选讲

  例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?

  (1)在△ABC中,p:A>B q:BC>AC;

  (2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;

  (3)在△ABC中,p:SinA>SinB q:tanA>tanB;

  (4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0

  解:(1)p是q的充要条件(2)p是q的充分不必要条件

  (3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件

  练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )

  A、x4 C、│x-1│>1 D、│x-2│>3

  例2.填空题

  (3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.

  答案:(1)充分条件(2)充要、必要不充分(3)A=> B C=> D故填充分。

  练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )

  A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件

  例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,

  由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;

  再证充分性即:xy≥0则|x+y|=|x|+∣y∣

  若xy≥0即xy>0或xy=0

  下面分类证明

  (Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣

  (Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣

  (Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣

  综上所述: |x+y|=|x|+∣y∣

  ∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  例5.已知抛物线y=-x2+mx-1点A(3,0) B(0,3),求抛物线与线段AB有两个不同交点的充要条件.

  解:线段AB:y=-x+3(0≤x≤3)-----------(1)

  抛物线: y=-x2+mx-1---------------(2)

  (1)代入(2)得:x2-(1+m)x+4=0--------(3)

  抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.

高中数学试讲教案 篇2

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书