高中数学函数教案 篇1
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以
的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值
开始,逐渐让
在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式
时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如
)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
教案网权威发布高中高一下册语文《孔雀东南飞》教学设计,更多高中高一下册语文《孔雀东南飞》教学设计相关信息请访问教案网。
设计说明
1、指导思想
本设计依据新课标的要求,立足于培养学生识记理解古汉语知识和鉴赏古典文学作品的能力,在自主、合作、探究的学习过程中养成自主学习、深入探究的良好习惯。
2、教学设想
《孔雀东南飞》是我国古代最长的叙事诗,也是乐府诗中的一朵奇葩,在思想上和艺术上都有极高的成就,对于这样一篇经典名作,我认为应该不惜时间精读细研,因此我确定用三课时完成。
本单元的话题为“爱的生命的乐章”,与单元话题相一致,我把本课的教学重点确定为:理解青年男女对美好爱情的执著追求和封建礼教、专制家长摧残青年男女爱情的罪恶。要深入理解这一重点问题,必须先扫清字词障碍,读懂原文。本文写作年代离我们十分久远,文中有很多生词、古今异义词等文言知识,可通过本课的学习让学生积累有关文言基础知识,培养学生阅读文言文的能力。另外,人物形象的塑造、思想价值的实现要借助于一定的写作手法,乐府诗常用的赋、比、兴手法也应是学习的内容之一。因此,我确定了这样三个方面的学习目标。
疏通文意,学习积累文言基础知识,学生依靠课下注释和工具书基本可以完成,因此可采用自主、合作、探究的学习方式以学生自行解决为主,教师可就疑难问题略作指导。重点目标的实现可从分析人物形象入手,采用问题研讨的方式引导学生层层深入地理解作品思想内涵和社会意义。难点(起兴手法)的突破可引导学生拓展联想,用学生较为熟悉的例子帮助他们理解。
3、本设计的特点
本设计没有刻意求新,而是重在扎实严谨上作文章。教学内容的安排由易到难;各教学环节环环相扣,层层深入,过渡严谨自然。教学活动突出了学生的主体地位。
《孔雀东南飞》教学设计
教学目标:
1、学习积累文言基础知识:实词、多义词、偏义复词、古今异义词、互文等,培养学生阅读文言文的能力
2、分析人物形象,理解刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶,深入理解作品的社会意义,培养学生分析鉴赏文学作品的能力并引导学生树立正确的爱情观、价值观
3、了解乐府诗歌的常用表现手法赋、比、兴
教学重点:刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶
教学难点:赋、比、兴手法
教学用具:课件
教学时数:三课时
教学过程:
第一课时
活动内容:疏通文本,理清情节结构,初步认识作品思想内涵
活动过程:
一、导入
爱情是文学作品永恒的主题,古今中外的文人墨客写下无数优美的诗篇讴歌美丽的爱情。但在中国漫长的封建社会里,封建礼教、家长制等传统文化的冷漠残酷使无数美丽的爱情遭到了无情的摧残,从而造成了一幕幕爱情悲剧。今天就让我们走近焦仲卿和刘兰芝的爱情悲剧,感受封建家长制的罪恶和这种制度下的青年男女对爱情的不屈追求。
二、学生自己阅读注解,识记有关文学常识
1、乐府:本是汉武帝设立的音乐机关,它的职责是采集民间歌谣或文人的诗来配乐,以备朝廷之用。它所搜集整理的诗歌后世就叫“乐府诗”或“乐府”。
2、《孔雀东南飞》是我国古代最长的一首长篇叙事诗,也是乐府民歌的代表作之一,与北朝的《木兰辞》并称“乐府双璧”。
3、本诗出自南朝徐陵编写的《玉台新咏》。《玉台新咏》是继《诗经》、《楚辞》之后最早的一部诗歌总集。
三、初读课文,疏通文意,掌握有关文言知识
1、学生默读全诗,借助工具书和注释疏通文意,不懂的词句做出记号
2、就自己不懂的词句在小组内讨论交流
3、教师解答学生解决不了的疑难字词,并指导学生理解归纳本课中古今异义词、偏义复词、互文等文言知识
出示示例:(前两类现象各出示一个例子,其他让学生自己去整理)
①古今异义词
汝岂得自由(古:自作主张 今:没有束缚)
可怜体无比(古:可爱 今:值得同情)
叶叶相交通(古:交错相通 今:指运输)
本自无教训(古:教养 今:失败的经验)
处分适兄意(古:处理 今:处罚)
②偏义复词
两个意义相关或相反的词连起来当作一个词使用,实际上只取其中一个词的意义,另一个词只作陪衬。如:
昼夜勤作息(只取“作”之意,“息”只为陪衬)
便可白公姥(只取“姥”之意)
我有亲父母(只取“母”之意)
逼迫兼弟兄(只取“兄”之意)
③ 互文句
东西植松柏,左右种梧桐
枝枝相覆盖,叶叶相交通
四、在扫清文字障碍的基础上,再浏览课文。
1、结合诗前小序,了解故事梗概
2、理清情节结构,给故事发展的每一个阶段拟一个小标题
学生回答后教师出示:
故事开端(1-2段) 自请遣归
教案网权威发布高中高一数学教案:两角差的余弦公式教案,更多高中高一数学教案相关信息请访问教案网。
两角差的余弦公式
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
【学习目标】
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用
【难点】两角差余弦公式的推导过程
预习自学案
一、知识链接
1. 写出 的三角函数线 :
2. 向量 , 的数量积,
①定义:
②坐标运算法则:
3. , ,那么 是否等于 呢?
下面我们就探讨两角差的余弦公式
二、教材导读
1.、两角差的余弦公式的推导思路
如图,建立单位圆O
(1)利用单位圆上的三角函数线
设
则
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
从而得到两角差的余弦公式:
____________________________________
(2)利用两点间距离公式
如图,角 的终边与单位圆交于A( )
角 的终边与单位圆交于B( )
角 的终边与单位圆交于P( )
点T( )
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
(3) 利用平面向量的知识
用 表示向量 ,
=( , ) =( , )
则 . =
设 与 的夹角为
①当 时:
=
从而得出
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
此时 =
从而得出
2、两角差的余弦公式
____________________________
三、预习检测
1. 利用余弦公式计算 的值.
2. 怎样求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
训练案
一、 基础训练题
1、
2、
3、
二、综合题
--------------------------------------------------
高中数学函数教案 篇2
教学目标
知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。
能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。
教学重点:函数单调性的有关概念的理解
教学难点:利用函数单调性的概念判断或证明函数单调性
教具:多媒体课件、实物投影仪
教学过程:
一、创设情境,导入课题
[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:
问题1:气温随时间的增大如何变化?
问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?
[引例2]观察二次函数
的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。
结论:
(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;
(2)左侧y随x的增大而减小;右侧y随x的增大而增大。
上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。
二、给出定义,剖析概念
①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值
②单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。
注意:
(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。
(2)函数单调性是针对某一个区间而言的,是一个局部性质。
判断1:有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
判断2:定义在R上的函数f (x)满足f (2)> f(1),则函数f (x)在R上是增函数。
函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。
训练:画出下列函数图像,并写出单调区间:
三、范例讲解,运用概念
具有任意性
例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减
注意:
(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。
(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。
例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。
分析证明中体现函数单调性的定义。
利用定义证明函数单调性的步骤。
高中数学函数教案 篇3
对数函数及其性质教学设计
1.教学方法
建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.
在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导
新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。
3.教学手段
本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.
4.教学流程
四、教学过程
教学过程
设计意图
一、创设情境,导入新课
活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。
(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。
(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知
(4)由表格中的数据:
碳14的含量P
0.5
0.3
0.1
0.01
0.001
生物死亡年数t
5730
9953
19035
39069
57104
可读出精确年份为39069,当P值为0.001时,t大约为57104年,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。
(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。
(6)把函数模型一般化,可给出对数函数的概念。
通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。
和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。
二、形成概念、获得新知
定义:一般地,我们把函数
叫做对数函数。其中x是自变量,定义域为
例1求下列函数的定义域:
(1);(2).
解:(1)函数的定义域是。
(2)函数的定义域是。
归纳:形如的的函数的定义域要考虑—
三、探究归纳、总结性质
活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。
选取完成最好、最快的小组,由组长在班内展示。
活动2:小组讨论,对任意的a值,对数函数图象怎么画?
教师带领学生一起举手,共同画图。
活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗?
然后由学生讨论完成下表左边:
函数的图象特征
函数的性质
图象都位于y轴的右方
定义域是
图象向上向下无限延展
值域是R
图象都经过点(1,0)
当x=1时,总有y=0
当a>1时,图象逐渐上升;
当0当a>1时,是增函数
当0通过对定义的进一步理解,培养学生思维的严密性和批判性。
通过作出具体函数图象,让学生体会由特殊到一般的研究方法。
学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。
师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。
四、探究延伸
(1)探讨对数函数中的符号规律.
(2)探究底数分别为与的对数函数图像的关系.
(3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系.
五、分析例题、巩固新知
例2比较下列各组数中两个值的大小:
(1),;
(2),;
(3),。
解:
(1)在上是增函数,
且3.41时,在上是增函数,
且3.4 f(1),则函数f (x)在R上是增函数。
函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。
训练:画出下列函数图像,并写出单调区间:
三、范例讲解,运用概念
具有任意性
例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减
注意:
(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。
(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。
例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。
分析证明中体现函数单调性的定义。
利用定义证明函数单调性的步骤。
高中数学函数教案 篇4
一、教学目标
(一)知识教学点
知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式。
(二)能力训练点
通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力。
(三)学科渗透点
分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想。
二、教材分析
1。重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫。
2。难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点。由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了。
3。疑点:是否有继续研究直线方程的必要?
三、活动设计
启发、思考、问答、讨论、练习。
四、教学过程
(一)复习一次函数及其图象
已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上。初中我们是这样解答的:∵A(1,2)的坐标满足函数式,
∴点A在函数图象上。
∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上。
现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会。)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式。简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系。
(二)直线的方程
引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?
一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是。一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应。
以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解。这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线。
上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的。
显然,直线的方程是比一次函数包含对象更广泛的一个概念。
(三)进一步研究直线方程的必要性
通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究。
(四)直线的倾斜角
一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α。特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°。
直线倾斜角角的定义有下面三个要点:
(1)以x轴正向作为参考方向(始边);
(2)直线向上的方向作为终边;
(3)最小正角。
按照这个定义不难看出:直线与倾角是多对一的映射关系。
(五)直线的斜率
倾斜角不是90°的直线。它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示,即
直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率。
(六)过两点的直线的斜率公式
在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的。当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的。怎样用P2和P1的坐标来表示这条直线的斜率?
P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q。那么:
α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)
综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:
对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(七)例题
例1如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率。
∵l2的倾斜角α2=90°+30°=120°,
本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板。
例2求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角。
∴tgα=-1。∵0°≤α<180°,∴α=135°。
因此,这条直线的斜率是-1,倾斜角是135°。
讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得。
(八)课后小结
(1)直线的方程的倾斜角的概念。(2)直线的倾斜角和斜率的概念。
(3)直线的斜率公式。
五、布置作业
1。(练习
六、板书设计
直线方程的点斜式、斜截式、两点式和截距式
高中数学函数教案 篇5
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中数学函数教案 篇6
一、教学目标:
了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.
二、教学重点:
利用导数判断一个函数在其定义区间内的单调性.
教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.
三、教学过程
(一)复习引入
1.增函数、减函数的定义
一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
2.函数的单调性
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.
在单调区间上增函数的图象是上升的,减函数的图象是下降的.
例1讨论函数y=x2-4x+3的单调性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
=(x1-x2)(x1+x2-4)变形
当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号
∴y=f(x)在(-∞, 2)单调递减.判断
当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。
能否利用导数的符号来判断函数单调性?
高中数学函数教案 篇7
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析
1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
高中数学函数教案 篇8
教材:已知三角函数值求角(反正弦,反余弦函数)
目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
过程:
一、简单理解反正弦,反余弦函数的意义。
由
1在R上无反函数。
2在 上, x与y是一一对应的,且区间 比较简单
在 上, 的反函数称作反正弦函数,
记作 ,(奇函数)。
同理,由
在 上, 的反函数称作反余弦函数,
记作
二、已知三角函数求角
首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函数是单调递增的,且符合条件的角只有一个
(即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
这里用到 是奇函数。
例二、1、已知 ,求
解:在 上余弦函数 是单调递减的,
且符合条件的角只有一个
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的值。
解:由上题: 。
介绍:∵
上题
例三、(见课本P74-P75)略。
三、小结:求角的多值性
法则:1、先决定角的象限。
2、如果函数值是正值,则先求出对应的锐角x;
如果函数值是负值,则先求出与其绝对值对应的锐角x,
3、由诱导公式,求出符合条件的其它象限的角。
四、作业:
P76-77 练习 3
习题4.11 1,2,3,4中有关部分。
高中数学函数教案 篇9
【教学目标】
(一)知识与技能
1、了解幂函数的概念,会画幂函数y?x,y?x,y?x,y?x,y?x的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2、了解几个常见的幂函数的性质。
(二)过程与方法
1、通过观察、总结幂函数的性质,提高概括抽象和识图能力。
2、体会数形结合的思想。
(三)情感态度与价值观
1、通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。
2、通过合作学习,增强合作意识。
【教学重点】
幂函数的定义
【教学难点】
会求幂函数的定义域,会画简单幂函数的图象、
【教学方法】
启发式、讲练结合教学过程
一、复习旧课
二、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?
(总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积S?a2,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积V?a3,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长a?S12,这里a是S的函数
问题5:如果某人ts内骑车行进了1km,那么他骑车的速度V?t?1km/s,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
(一)幂函数的概念
如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的一些具体的函数式?
这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?幂函数的定义:一般地,我们把形如y?x?的函数称为幂函数(power function),其中x是自变量,?是常数。 【探究一】幂函数有什么特点?
结论:对幂函数来说,底数是自变量,指数是常数试一试:判断下列函数那些是幂函数练习1判断下列函数是不是幂函数3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、
根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?
(二):求幂函数的定义域
1.什么是函数的定义域?
函数自变量的取值范围叫做函数的定义域2.求函数的定义域时依据哪些原则?(1)解析式为整式时,x取值是全体实数。
2 (2)解析式是分式时,x取值使分母不等于零。
(3)解析式为偶次方根时,x取值使被开方数取非负实数。 (4)以上几种情况同时出现时,x取各部分的交集。
(5)当解析式涉及到具体应用题时,x取值除了使解析式有意义还要使实际问题有意义。例1写出下列函数的定义域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函数y=x3的定义域为R;
1(2)函数y=x2,即y=x,定义域为[0,+∞);
12(3)函数y=x-,即y=2,定义域为(-∞,0)∪(0,+∞);
x3-1(4)函数y=x2,即y=,其定义域为(0,+∞)、
3 x练习2求下列函数的定义域:
11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、
(三)、几个常见幂函数的图象和性质
我们已经学习了幂函数(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;请同学们在同一坐标系中画出它们的图象.性质:幂函数随幂指数α的取值不同,它们的性质和图象也不尽相同,但也有一些共性,例如,所有的幂函数都通过点(1,1),都经过第一象限;当0是,图象过点(1,1),(0,0),且在第一象限随x的增大而上升,函数在区间?0,上是单调增函数。0时幂函数y?x?图象的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,)上是单调减函数,且向右无限接近X轴,向上无限接 近Y轴。
(四)课堂小结
(五)课后作业
1、教材P 100,练习A第1题、
12在同一坐标系中画出函数y=x与y=x2的图象,并指数这两个函数各有什么性质以
3及它们的图象关系
高中数学函数教案 篇10
教学目标:
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数;
3.能够综合运用各种法则求函数的导数.
教学重点:
函数的和、差、积、商的求导法则的推导与应用.
教学过程:
一、问题情境
1.问题情境.
(1)常见函数的导数公式:(默写)
(2)求下列函数的导数:; ; .
(3)由定义求导数的基本步骤(三步法).
2.探究活动.
例1 求的导数.
思考 已知,怎样求呢?
二、建构数学
函数的和差积商的导数求导法则:
三、数学运用
练习 课本P22练习1~5题.
点评:正确运用函数的四则运算的求导法则.
四、拓展探究
点评 求导数前的变形,目的在于简化运算;如遇求多个积的导数,可以逐层分组进行;求导数后应对结果进行整理化简.
五、回顾小结
函数的和差积商的导数求导法则.
六、课外作业
1.见课本P26习题1.2第1,2,5~7题.
2.补充:已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.