《找次品》教学设计(精选12篇)
《找次品》教学设计 篇1
教学内容:人教版数学五年级下册第134-135页的内容。
教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学过程: 一、谈话引入 昨天晚上老师买来三瓶糖,谁知有一瓶给我儿子偷吃了两颗。像这样的商品比标准的商品轻了些,我们就把这商品叫“次品”,这节课我们就作为小小质检员,一起想办法找出这些次品,好不好?(板书课题:找次品)
二、初步探究(教学例1)
1、自主探索。
(1)刚才老师手上的三瓶糖,其中有一瓶是次品,有什么办法帮忙将它找出来吗?
生:用天平称来称。
师:对,我们可以用天平称来帮忙找出次品。
师:用天平称来称,至少要称多少次保证可以找出次品?
(2)请同学上台演示操作过程。
根据学生回答板书:3(1,1,1) 1次
小结:从三瓶里找出一瓶次品,至少要称多少次?( 1次)
2、设置悬念,激发欲望。
如果不是三瓶,而是2187瓶,至少要称多少次才能保证找出来呢?
找次品教学设计(精选10篇)
找次品教学设计 篇1
《找次品》教学设计 教学内容:人教版五年级数学第七单元数学广角第一课时《找次品》
教学目标:
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。 3.培养学生的合作意识和探究兴趣。 教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。 教学难点:观察归纳“找次品”这类问题的最优策略。 教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。
教学过程: 一、创设情景,初步感知: (一)、出示问题情境一(用实物演示) 有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。 1、学生独立思考。 2、全班交流。(用课件展示天平模型) 教师边演示边叙述。 结论:两瓶可以一次找出次品 3、3瓶的时候怎么找出来呢? 在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。 结论:三瓶也可以一次找出次品 (二)、出示问题情境二 1、如果在5瓶中呢?利用天平看谁最快把次品找出来。
(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?
(2)学生小组合作
师提示:大家可以拿出小正方体,用手摸拟天平摆摆看
(3)生汇报,师板书:
5(2,2,1)-2(1,1);2次 5(1,1,1,1,1)1次
《找次品》教学设计(通用4篇)
《找次品》教学设计 篇1
《找次品》教学设计 教学内容:人教版五年级数学第七单元数学广角第一课时《找次品》
教学目标:
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。 3.培养学生的合作意识和探究兴趣。 教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。 教学难点:观察归纳“找次品”这类问题的最优策略。 教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。
教学过程: 一、创设情景,初步感知: (一)、出示问题情境一(用实物演示) 有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。 1、学生独立思考。 2、全班交流。(用课件展示天平模型) 教师边演示边叙述。 结论:两瓶可以一次找出次品 3、3瓶的时候怎么找出来呢? 在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。 结论:三瓶也可以一次找出次品 (二)、出示问题情境二 1、如果在5瓶中呢?利用天平看谁最快把次品找出来。
(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?
(2)学生小组合作
师提示:大家可以拿出小正方体,用手摸拟天平摆摆看
(3)生汇报,师板书:
5(2,2,1)-2(1,1);2次 5(1,1,1,1,1)1次
《找次品》教学设计
《找次品》教学设计 教学内容:人教版五年级数学第七单元数学广角第一课时《找次品》
教学目标:
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。 3.培养学生的合作意识和探究兴趣。 教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。 教学难点:观察归纳“找次品”这类问题的最优策略。 教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。
教学过程: 一、创设情景,初步感知: (一)、出示问题情境一(用实物演示) 有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。 1、学生独立思考。 2、全班交流。(用课件展示天平模型) 教师边演示边叙述。 结论:两瓶可以一次找出次品 3、3瓶的时候怎么找出来呢? 在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。 结论:三瓶也可以一次找出次品 (二)、出示问题情境二 1、如果在5瓶中呢?利用天平看谁最快把次品找出来。
(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?
(2)学生小组合作
师提示:大家可以拿出小正方体,用手摸拟天平摆摆看
(3)生汇报,师板书:
5(2,2,1)-2(1,1);2次 5(1,1,1,1,1)1次
(4)师质疑:称1次能找到吗?一定能找到吗?称2次呢?
找次品 教学设计
表格式教学设计模式 课题《找次品》课时1班级五1编写者 一、教材内容分析
《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中, “次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。 二、教学目标(知识与技能、过程与方法、情感态度与价值观)1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。 2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。 3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。三、学习者特征分析 五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。四、教学策略选择与设计
“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。下面结合本次国培学习中贾福录教授主讲的《培养学生应用意识的策略》,来谈谈我在本课教学中主要使用的策略及我的设计意图。 五、教学环境及资源准备天平、瓶装口香糖、课件六、教学过程教学过程教师活动
找次品教学设计
教学内容:人教版数学五年级下册第134-135页的内容。
教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学过程: 一、谈话引入 昨天晚上老师买来三瓶糖,谁知有一瓶给我儿子偷吃了两颗。像这样的商品比标准的商品轻了些,我们就把这商品叫“次品”,这节课我们就作为小小质检员,一起想办法找出这些次品,好不好?(板书课题:找次品)
二、初步探究(教学例1)
1、自主探索。
(1)刚才老师手上的三瓶糖,其中有一瓶是次品,有什么办法帮忙将它找出来吗?
生:用天平称来称。
师:对,我们可以用天平称来帮忙找出次品。
师:用天平称来称,至少要称多少次保证可以找出次品?
(2)请同学上台演示操作过程。
根据学生回答板书:3(1,1,1) 1次
小结:从三瓶里找出一瓶次品,至少要称多少次?( 1次)
2、设置悬念,激发欲望。
如果不是三瓶,而是2187瓶,至少要称多少次才能保证找出来呢?
(1)请同学们猜一猜,大胆说出猜想结果。