1.2.1有理数(精选13篇)
1.2.1有理数 篇1
一、教学目标:
(一)知识与技能
1、 借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛性。
2、 理解有理数的概念。
3、 会用正数、负数、零表示生活中具有相反意义的量。
4、 理解有理数的分类。
(二)能力训练要求
通过大量的现实实例,多彩的数学活动机会,让学生体验数学和现实生活的紧密联系,提高学习的兴趣,培养学习的合作交流能力,促进对知识的理解和掌握。
二、重点、难点:
1、重点:有理数的概念。
2、难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
三、教学过程:
1、 创设情景,引入新知:
将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:
(说明:学生自己做的作业,较能引起学生的兴趣。)
问:材料中含有哪几类数据?
(1) 本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛。我市爱绿艺校代表队的32名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的荣誉却是幼儿组最高的金奖。
答:都是自然数。
(2) 据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和 倍,是世界上公路隧道最多的国家。我国目前最长的隧道是铁路线上的秦岭隧道,全长18.46公里。正在施工的双向分离式四车道终南山隧道是世界第二、亚洲第一的公路隧道。
1.2有理数(精选17篇)
1.2有理数 篇1
教学目标1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3, 体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)
设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出). 问题1:观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’. 按照书本的说法,得出“整数”“分数”和“有理数”的概念. 看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
1.2.1 有理数(精选17篇)
1.2.1 有理数 篇1
教学目标1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3, 体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)
设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出). 问题1:观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’. 按照书本的说法,得出“整数”“分数”和“有理数”的概念. 看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
《有理数》教学反思(精选3篇)
《有理数》教学反思 篇1
七年级数学的学习成效对整个初中阶段数学学习有至关重要的作用。在某种意义上甚至可以说,七年级数学的好坏就决定了学生初中学习生活中数学的将来。扎实的基础、能学会的信念会让学生在以后的学习中越来越有劲头,从而能逐步进步,完成自己的学习任务。
七年级数学在学习了正数、负数、有理数的概念后,教材引人了有理数的加减法。第一课时我组织学生学习了有理数的加法法则,第二课时,就是提高学生计算能力的准确性,进一步熟练加法法则的使用方法。我第二课时的教学过程如下。首先组织学生说出有理数的加法法则,然后展示设计好的几组练习题让学生练习、演板,练习题涉及到了多种情况,有整数、小数、分数的加法;正数大、负数小;正数小、负数大;有零参与的等类型。在订正时,让学生说出自己的思考依据,运用的哪条法则,再针对问题出错较多的符号辨别不清的,选择几道正分数小、负分数大的计算题要求学生练习,说出思路。最后解决例题2,让学生体会数学与实际生活中的紧密联系。
教学后,对学生的计算和数学的实际运用想了很多。学生升入初中后,都抱着努力学好的想法,学习劲头都很足,可是,由于小学的基础不同,在计算上,在理解上,在问题思考上确实存在着比较大的差异。迈入初一的第一步一定让他们成功,给他们成功的感觉、信念,所以,教学进度要缓慢,要达到相当的学生都掌握学习的知识、技能为止,这里有个度的把握。一般来说开始接触到新知,要求大部分、至少百分之八十的学生掌握,后面再通过其他的形式带动更多的学生全部学会。学生学习是螺旋形的,不会一直学会,就再也不忘记了。你就是下大工夫把有理数的加法全部学会,还有有理数的乘除、混合运算等,依然是这部分学生的拦路虎。在学习了有理数的加法法则后,知道有哪些学生的哪一方面有问题,在以后的教学中,有的放矢,针对学生的问题进行练习,拉他们上来。教学是有序的,不能偏,不能就某个别的学生的问题浪费大部分学生的时间;教学是流动的,在持续的教学中,不能丢掉一个学生;教学是有方的,你总能在教学中找到适合每一个学生的方法。
1.2 有理数(通用13篇)
1.2 有理数 篇1
1.2 有理数
【教学目标】
1.掌握有理数的概念;
2.会对有理数按一定的标准进行分类;
3.体检分类.
【对话探索设计】
〖复习〗
我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗? 可以写成两个整数的比吗? 是不是分数?
结论:所有的有限小数和无限循环小数都是分数.
〖探索1〗
小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?
结论:正整数﹑零﹑负整数统称整数.
〖探索2〗
下列负数哪些是负分数?
-12, ,-0.33, ,-12.03, .
〖探索3〗
所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:
1, 0.0708, -700, -π, -3.88, 0, , 3.14159265, , .
正整数集合:{ …} 负整数集合:{ …}
整数集合:{ …}
正分数集合:{ …} 负分数集合:{ …}
(注意:大括号内的省略号表示什么?)
1.2.1有理数(精选16篇)
1.2.1有理数 篇1
一. 教学目标知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类. 过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,了解有理数的产生的必要性、合理性. 情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史. 二. 教学重点和难点教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点. 教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点. 三. 教学过程1. 创设情景,引入新课同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊? 我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢? 2.合作探索,寻求新知师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量.师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上“+”(读做正号);在这些数的前面放上“-”(读做负号)就表示负数,如-123,-15,-2/3等.负数是在正数的前面加上“—”得到的,大家现在来举一队正数和负数?那下面老师来举一个例子:0是正数,-1是负数,对吗?那么1是正数,0是负数.正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数.(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作-50米.那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢?做一做:第二题这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么-1,-2,-3,-4应该称为什么?1/2,3/2,5.4为正分数,则-1/2,-3/2,-5.4为 .(这里老师要提示一下:凡是能化为分数的小数都算做是分数) 3.练习反馈,巩固新知例:下列给出的各数中哪些是正数、负数?哪些是整数、分数?哪些是有理数?-8.4,22,+17/6,0.33,0,-3/5,-9.先让学生做,总结学生出现的一些问题分析:同学们我们在分类的时候,只要根据前面这个分类图来分就会很简单.再提一下正有理数.由教师来演示.本例主要考察学生对于数的不同分类,加强学生的分类意识.课内练习第8页1,24.回顾小结强调负数的由来,及有理数的分类.5.布置作业p8---1,2,3,4,5(选做).四. 教学反思昨天的作业情况很不理想,特别是12班,还有今天上课12、13班的纪律情况还是不行,今天在这个班级上课的教学任务完成的不好,我甚至抓不住教学时间,我得好好反思一下.有些同学喜欢跟老师抬杠,这让我非常苦恼,还有上课随意插话,如李正一,许小斌,周贤达,还有同学上课说话如王翔.17,18班的情况比12,13班好,但也有一些同学上课讲话.