第三册一元二次方程(通用3篇)
第三册一元二次方程 篇1
教学目标 :(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
教学重点:一元二次方程的概念、一元二次方程的一般形式
教学难点 :因式分解法解一元二次方程
教学过程 :
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
练习
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
练习
(三)小结
(四)布置作业
板书设计
第三册一元二次方程 篇2一、素质教育目标
(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
一元二次方程(通用12篇)
一元二次方程 篇1
教学目标
1. 了解整式方程和的概念;
2. 知道的一般形式,会把化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:的概念和它的一般形式。
难点:对的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。
2)重点、难点分析
理解的定义:
是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:
(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。
(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。
教学目的
1.了解整式方程和的概念;
2.知道的一般形式,会把化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生
由课本例题引发的反思--《一元二次方程的应用》(通用2篇)
由课本例题引发的反思--《一元二次方程的应用》 篇1
一元二次方程的应用中例1:用22cm长的铁丝折成一个面积为30cm2的矩形,求这个矩形的长与宽。这是面积问题中的一个典型例题,我在引导学生解决此题之后,马上改编为:用22cm长的铁丝能不能折成一个面积为32cm2的矩形?试分析你的结论。通过此题,与一元二次方程的判别式联系起来,前后知识融会贯通。又改编为:有一面积为150 m2的长方形鸡场,鸡场的一边*墙(墙长18)另三边用竹篱笆围成,如果竹篱笆的长为35,求鸡场的长与宽。
通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升,这是这节课中的一大亮点。
由课本例题引发的反思--《一元二次方程的应用》 篇2本节是一元二次方程的应用的继续和发展,由于能用一元二次方程解的应用题,一般都可以用算术方法解而需要用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以讲本节可以使学生认识到用代数方法解应用题的优越性和必要性。
12.1 一元二次方程(精选14篇)
12.1 一元二次方程 篇1
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
第一册一元二次方程的应用(精选3篇)
第一册一元二次方程的应用 篇1
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点 :根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
《一元二次方程》考试之后的反思(通用2篇)
《一元二次方程》考试之后的反思 篇1
一元二次方程进行了单元测试,虽然是下午第四节自习时间作业”加班加点直到晚上10:30,没有耽误第二天的第一节测试的,但是为了能给学生及时地反馈,我也做起了“家庭课讲评。
五班优秀人数25人,而六班只有12人,及格率也相差很大。分析其中原因,近段时间以来六班纪律涣散占很大比重。自分班以来,我深感肩上的担子重,责任大,但我坚信勤能补拙,所以我比以往更用心更努力,可以说用上了十二分的力气和心劲。但是学生的表现却令我失望,态度不端正不拿学习当回事,我行我素,精神麻木。其次,学习不扎实,思维方法不严密。反复强调的知识点也丢三落四,漏洞百出。
痛定思痛,只有老师的努力只能成功了一半,下一步的任务是强抓学生,端正他们的态度,稳定课堂秩序。
铁的纪律才能出铁的成绩,要提高六班成绩,必须整顿班风,严明纪律,创造一个良好的学习环境。
《一元二次方程》考试之后的反思 篇2在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。