因数与倍数教案

时间:2025-04-05

《因数与倍数》教案(精选16篇)

《因数与倍数》教案 篇1

  教学目标:

  1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

  2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。

  3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。

  教学重点:理解倍数和因数的意义。

  教学难点:探索求一个数的倍数和因数的方法。

  教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。

  设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。

  教学过程:

  一、智力竞猜 引入新课

  1、让学生进行智力竞猜春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)

  2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍下三个人的关系。学生可能会说出韩有才.是爸爸,韩有才是儿子的语句,这时引导学生说出谁是谁的爸爸谁是准的儿子。

  3、上述父子关系是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系倍数和因数。

  设计说明:智力竞猜走学生喜欢的形式,因为每个学生都有争强好胜之心,竞猜有两个作用,一是激发学生的学习兴趣,二是以此引出相互依存的关系,为理解倍数和因数的相互依存关系作铺垫。

查看全文

《因数与倍数》小学教案(精选17篇)

《因数与倍数》小学教案 篇1

  一、谈话导入,激发兴趣

  1、回顾学过的数

  2、明确学习主题

  二、自主学习,探究新知

  1、自主学习

  自学指导:阅读课本P12和P13例1

  (1)2脳6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?

  (2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?

  (3)怎样找出18的全部因数?你是怎样想的?

  怎样表示出18的因数?

  要求:1、独立学习

  2、时间6分钟

  3、全班交流

  问题一:初建模型

  在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。

  问题二:深化模型

  明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。

  ab=c(a、b、c为非零自然数)

  问题三:应用模型

  ①交流找一个数的因数的方法及表示方法。

  ②找30、36的因数。

  3、议一议

  (1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?

  (2)通过找一个数的因数,你有什么发现?

  三、检测反馈,拓展运用

  四、板书设计

  因数和倍数

  2脳6=12

  2和6是12的因数。

  12是2和6的倍数。

  3脳4=12

  ab=c(a、b、c为非零自然数)

  a和b是c的因数,c是a和b的倍数。

  《人教版:五年级下册《因数与倍数》教学设计》

《因数与倍数》小学教案 篇2

  教学目标:

  1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

查看全文

《因数与倍数》教学设计方案(精选13篇)

《因数与倍数》教学设计方案 篇1

  课题名称 因数与倍数 教学时间 两课时(80分钟) 学习者分析 学生学习这一内容之前已经理解掌握整数乘法,并知道乘法算式中的因数和倍数;学生对因数和倍数在字面上有一定的理解。 虽然有些理解,但也有一定的难度,不过能在老师的指导下尝试完成教学问题。又由于学生个体差异较大,理解层次差异大,解决问题的能力、应用数学的能力还有待提高训练。         教学目标 一、情感态度与价值观 1. 体验所学知识和现实生活的密切联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。 2、培养学生的抽象、概括的能力,渗透事物之间相互联系、相互依存的唯物辨证主义的观念。 二、过程与方法 1. 培养学生的合作意识、探索意识,以及热爱数学学习的情感; 2. 加强学生通过练习去培养发现问题的习惯,然后去寻求方法解决问题。 三、知识与技能 1. 从操作活动中理解因数与倍数的意义,会判断一个数是不是另一个数的因数或倍数; 2. 能与大家交流自己解决问题的能力,培养口述能力。

查看全文

《因数与倍数》教学设计与反思(通用2篇)

《因数与倍数》教学设计与反思 篇1

  教学目标:

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:理解因数和倍数的含义。

  教学过程:

  一、创设情境,引入新课

  师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?

  学生回答。

  师:哦,老师知道了。是好朋友。如果他这样介绍:是好朋友。能行吗?

  生:不行,这样就不知道谁是谁的好朋友了。

  师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。

  二、探索交流,解决问题

  1、师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。

  根据学生的汇报板书:

  1×12=12                    2×6=12           3×4=12

  12×1=12                    6×2=12           4×3=12

查看全文

《因数与倍数》说课稿范文(精选6篇)

《因数与倍数》说课稿范文 篇1

  一、说教材

  在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

  教学目标定为以下几点:

  (一)知识、技能目标:

  1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。

  2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

  (二)情感、价值目标:

  让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

  本课的教学重点是理解倍数和因数的含义与方法。

  教学难点是掌握找一个数的倍数和因数的方法。

  二、学生学习情况分析

  本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

查看全文

《因数与倍数》集体备课(精选16篇)

《因数与倍数》集体备课 篇1

  教材分析

  一、教学内容

  本单元包含的内容有:1、因数和倍数2、 2、5、3的倍数的特征3、质数和合数

  二、教学目标

  (1)使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  (2)探索并掌握2、5、3的倍数的特征。

  (3)逐步培养学生的数学抽象能力。

  三、教学重点:掌握概念之间的联系和区别。

  四、教学难点:掌握倍数的特征。

  五、新旧教材的对比

  1.精简概念,减轻学生记忆负担。

  (1)不再出现“整除”“约数”概念,直接从乘法算式引出因数和倍数的概念。

  (2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  (3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2.注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  六、教材建议与畅想

  本单元建议6课时左右

  因数和倍数

  因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。现在的具体做法:

  (1)用12个同样的小正方形摆一个长方形,可以怎样摆?能不能举一道简单的乘法算式,把你心目中的摆法表示出来

  (2)通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此我们还得出三道不一样的乘法算式。以4×3=12为例,4×3=12,从数学的角度看,我们可以说4是12的因数,3也是12的因数。反过来,我们还可以说,12是4的倍数,12也是3的倍数。根据“4×4=16、400÷16=25”这两个算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?(此题的设计帮助学生明确了3个概念:①当两个因数相同时,通常只需要说出或写出一个。②能够根据算式灵活的说出因数与倍数的关系。③因数和倍数它们是一种相互依存的关系)

查看全文
目录