相反数教案

时间:2025-04-05

相反数(精选12篇)

相反数 篇1

  教学目标

  1.了解的意义,会求有理数的;

  2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

  3.初步认识对立统一的规律。

  教学建议

  一、重点、难点分析

  本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

  二、知识结构

  的定义 的性质及其判定 的应用

  三、教法建议

  这节课教学的主要内容是互为的概念。

  由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

  四、的相关知识

  1.的意义

  (1)只有符号不同的两个数叫做互为,如-1999与1999互为。

  (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

  (3)0的是0。也只有0的是它的本身。

  (4)是表示两个数的相互关系,不能单独存在。

查看全文

1.2.3 相反数(通用14篇)

1.2.3 相反数 篇1

  教学目标

  1.了解的意义,会求有理数的;

  2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

  3.初步认识对立统一的规律。

  教学建议

  一、重点、难点分析

  本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

  二、知识结构

  的定义 的性质及其判定 的应用

  三、教法建议

  这节课教学的主要内容是互为的概念。

  由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

  四、的相关知识

  1.的意义

  (1)只有符号不同的两个数叫做互为,如-1999与1999互为。

  (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

  (3)0的是0。也只有0的是它的本身。

  (4)是表示两个数的相互关系,不能单独存在。

查看全文

1.2.3 相反数(通用12篇)

1.2.3 相反数 篇1

  教学目标 

  1.了解的意义,会求有理数的;

  2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

  3.初步认识对立统一的规律。

  教学建议

  一、重点、难点分析

  本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

  二、知识结构

  的定义 的性质及其判定 的应用

  三、教法建议

  这节课教学的主要内容是互为的概念。

  由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

  四、的相关知识

  1.的意义

  (1)只有符号不同的两个数叫做互为,如-1999与1999互为。

  (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

  (3)0的是0。也只有0的是它的本身。

  (4)是表示两个数的相互关系,不能单独存在。

查看全文

相反数(精选16篇)

相反数 篇1

  教学目标

  1.了解的意义,会求有理数的;

  2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

  3.初步认识对立统一的规律。

  教学建议

  一、重点、难点分析

  本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

  二、知识结构

  的定义 的性质及其判定 的应用

  三、教法建议

  这节课教学的主要内容是互为的概念。

  由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

  四、的相关知识

  1.的意义

  (1)只有符号不同的两个数叫做互为,如-1999与1999互为。

  (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

  (3)0的是0。也只有0的是它的本身。

  (4)是表示两个数的相互关系,不能单独存在。

查看全文

新人教版七年级上 1.2.3相反数

1.2.3  相反数[教学目标]1.       借助数轴,使学生了解相反数的概念 2.       会求一个有理数的相反数 3.       激发学生学习数学的兴趣. [教学重点与难点]重点: 理解相反数的意义难点: 理解相反数的意义
[教学设计]
提问1、  数轴的三要素是什么?2、  填空:数轴上与原点的距离是2的点有       个,这些点表示的数是         ;与原点的距离是5的点有       个,这些点表示的数是          。新课相反数的概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。概念的理解:(1)       互为相反数的两个数分别在原点的两旁,且到原点的距离相等。(2)       一般地,数a的相反数是 , 不一定是负数。(3)       在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数-(-3)是(-3)的相反数,所以-(-3)=3,于是(4)       互为相反数的两个数之和是0                                                         即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数(5)       相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。例1 求下列各数的相反数:(1)-5             (2)           (3)0(4)              (5)-2b          (6) a-b (7) a+2例2 判断:(1)-2是相反数(2)-3和+3都是相反数(3)-3是3的相反数(4)-3与+3互为相反数(5)+3是-3的相反数(6)一个数的相反数不可能是它本身例3 化简下列各数中的符号:(1)         (2)-(+5)(3)         (4) 例4 填空:(1)a-4的相反数是        ,3-x的相反数是        。(2) 是       的相反数。(3)如果-a=-9,那么-a的相反数是          。例5 填空:(1)若-(a-5)是负数,则a-5      0.(2)  若 是负数,则x+y        0.例6 已知a、b在数轴上的位置如图所示。(1)       在数轴上作出它们的相反数;(2)       用“<”按从小到大的顺序将这四个数连接起来。例7 如果a-5与a互为相反数,求a.练习:教材14页小节:相反数的概念及注意事项作业:18页第3题课题: 1.2.3  相反数

查看全文

第一章(第3课时)1.2.1 相反数

第一章(第3课时)1.2.1   相反数教学目标1 借助数轴理解相反数的概念,会求一个数的相反数;2 培养学生观察、猜想、归纳的能力,初步形成数形结合的思想。重点难点重点:理解相反数的概念和求一个数的相反数难点:相反数概念的理解教学过程一 激情引趣,导入新课思考:⑴数轴上与原点距离是2 的点有______个,这些点表示的数是_____;与原点的距离是5 的点有______个,这些点表示的数是_______(2)数轴上与原点的距离是0.5的点有_____个,这些点表示的数是______,数轴上与原点的距离是 的点有____个,这些点表示的数是_______一般地,设a是一个正数,数轴上与原点的距离是a的点有___个,它们分别在原点的____,表示____和____,我们说这两点关于原点对称。二 合作交流,探究新知。相反数的概念 观察:  +3.6 和-3.6,6和-6 , , 和- 每对数,有什么相同和不同?归纳:像+3.6和-3.6、6和-6、 , 和- 只有符号不同的两个数,叫互为相反数。其中一个叫另一个的相反数.考考你:(1)-8的相反数是___,7是____的相反数。(2)a的相反数是_____.-a的相反数是____ (3) 怎样表示一个数的相反数?在这个数的前面添上“-”,就可表示这个数的相反数。如12的相反数是____,-9的相反数是_____,如果在这个数的前面添上“+”表示____. (4)有人说一个数的前面带有“-”号这个数必是负数,你认为对吗?如果不对,请举一个反例。(5)互为相反数在轴上的位置有什么特点? (6) 零的相反数是____.三 应用迁移,拓展提高1 关于相反数的概念例1 判断下列说明是否正确(1)-(-3)表示-3的相反数(  ),(2)-2.5的相反数是2.5(  )(3)2.7与-3.7是互为相反数(  )(4)-π是相反数。2 求一个数的相反数例2 分别写出下列各数的相反数:1.3、-6、- 、-(-3)、π-13 理解-(-a)的含义例3 填空:(1) -(-0.8)=___,(2) –(- )=____,(3)  +(+4)=____,(4) –(-11)=_____四 冲刺奥赛,培养智力例4 已经:a+b=0,b+c=0,c+d=0,d+f=0,则a,b,c,d四个数中,哪些数是互为相反数?哪些数相等?例5 若数 与 互为相反数,求a的相反数。变式:如果x与 互为相反数,且y≠0,则x的倒数是(   )a    2y   b      c   -2y   d  例6 有理数a等于它的倒数,有理数b等于它的相反数,则 等于(    )a    0 b    1   c   -1    d    2 (第9届“希望杯”初一第2试)四 课堂练习,巩固提高1.-1.6是____的相反数,___的相反数是0.3.2.下列几对数中互为相反数的一对为(      ).a.-(-8)和 -(+8) b.-(-8)与 -(+8) c.+(-8)与+(+8)d-(-8)与+(-8)3.5的相反数是____; x+1的相反数是___;     的相  a-b的反数是____.4.若a=-13,则-a =_____若-a=7, 则a=_____                     5.若 a 是负数,则 -a  是  ___数;若 -a   是负数,则 a 是______数.6 有如下三个结论:甲:a、b、c中至少有两个互为相反数,则a+b+c=0乙:a、b、c中至少有两个互为相反数,则 丙:a、b、c中至少有两个互为相反数,则 其中正确结论的个数是(   ) a    0  b     1 c    2 d   3五 反思小结,巩固升华1 什么叫互为相反数?2 一对互为相反数有什么特点?3 怎样表示一个数的相反数?作业:作业评价,相反数

查看全文
目录