任意角的三角函数教案

时间:2025-04-05

高中数学《任意角的三角函数》说课稿模板

  各位同仁,各位专家:

  我说课的课题是<<任意角的三角函数>>,内容取自苏教版高中实验教科书《数学》第四册 第1.2节

  先对教材进行分析

  教学内容:任意角三角函数的定义、定义域,三角函数值的符号.

  地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程.

  教学重点:任意角三角函数的定义

  教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;

  学情分析:

  学生已经掌握的内容,学生学习能力

  1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

  2.我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

  3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行

  针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下

  知识目标:

  (1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

  能力目标:

  (1)理解并掌握任意角的三角函数的定义;

  (2)正确理解三角函数是以实数为自变量的函数;

查看全文

任意角的三角函数教案2

一、 教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.
4.培养学生求真务实、实事求是的科学态度.
二、 重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.
难点:把三角函数理解为以实数为自变量的函数.
关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).
三、 教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.
四、 教学过程
[执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业]

查看全文

下学期>>4.3 任意角的三角函数

任意角的三角函数

教学目标 :

1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.

2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)

教学重点:

任意角的三角函数的定义.

教学难点 :

任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.

教学用具:

直尺、圆规、投影仪.

教学步骤 :

1.设置情境

角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.

2.探索研究

(1)复习回忆锐角三角函数

我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.

(2)任意角的三角函数定义

如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .

定义:①比值 叫做 的正弦,记作 ,即 .

②比值 叫做 的余弦,记作 ,即 .

图1

③比值 叫做 的正切,记作 ,即 .

同时提供显示任意角的三角函数所在象限的课件

提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?

利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.

请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.

查看全文

下学期 4.11 已知三角函数值求角(精选2篇)

下学期 4.11 已知三角函数值求角 篇1

  (第二课时)

  一.教学目标 

  1.掌握已知一角的正切值,求角的方法.

  2.掌握给定区间内,用反三角函数表示一个角的方法.

  二.教学具准备

  投影仪

  三.教学过程 

  1.设置情境

  师:请同学们看投影,回答问题

  (1)若 , ,则 .

  (2)若 , 则 .

  生:(1) 或 .

  (2) 或 .

  师:回答正确.请同学结合上面两个小题的求解过程,总结一下已知三角函数值求角的一般步骤:

  生:从上面两个小题的求解过程看,有三个步骤:

  第一步,决定角 可能是第几象限角.

  第二步,如果函数值为正数,则先求出对应的锐角 ;如果函数值为负数,则先求了与其绝对值对应的锐角 ;

  第三步,如果函数值为负数,则根据角 可能是第几象限角,得出 内对应的角—如果它是第二象限角,那么可表示为 ,如果它是第三或第四象限角,那么可表示为 或 .

  师:总结得很好,本节课我们继续学习用反正切表示角的方法,先请同学看问题(投影仪):

  2.探索研究(此部分可由学生仿照正弦、余弦分析解决)

  【例1】(1)已知 ,且 ,求 (精确到 ).

  (2)已知 ,且 ,求 的取值集合.

  解:(1)由正切函数在开区间 上是增函数和 可知,符合条件的角有且只有一个,利用计算器可得 (或 ).

  (2)由正切函数的周期性,可知 时, ,所以所求的 的集合是 .

  下面讨论反正切概念,请看 图形(图1)(投影仪):

  观察正切函数的图像的性质,为了使符合条件 ( 为任意实数)的角 有且只有一个,我们选择开区间 作基本的范围,在这个开区间内,符合条件 ( 为任意实数)的角 ,叫做实数 反正切,记作 ,即 ,其中 ,且 ,那么,此例第(2)小题的答案可以写成 .

查看全文

已知三角函数值求角(通用4篇)

已知三角函数值求角 篇1

  第三十七教时

  教材:(2)

  目的:理解反正切函数的有关概念,并能运用上述知识。

  过程:

  一、反正切函数

  1°在整个定义域上无反函数。

  2°在 上 的反函数称作反正切函数,

  记作 (奇函数)。

  二、例一、(P75例四)

  1、 已知 ,2、 求x(精确到 )。

  解:在区间 上 是增函数,符合条件的角是唯一的

  3、 已知 且 ,4、 求x的取值集合。

  解:

  所求的x的集合是 (即 )

  5、 已知 ,6、 求x的取值集合。

  解:由上题可知: ,

  合并为

  三、处理《教学与测试》P127-128  61课

  例二、已知 ,根据所给范围求 :

  1° 为锐角   2° 为某三角形内角    3° 为第二象限角    4°

  解:1°由题设

  2°设 ,或

  3°

  4°由题设

  例三、求适合下列关系的x的集合。

  1°      2°      3°

  解:1°

  所求集合为

  2° 所求集合为

  3°

  例四、直角 锐角A,B满足:

  解:由已知:

  为锐角,

  四、小结、反正切函数

  五、作业 :P76-77练习与习题4.11余下部分及《教学与测试》P128  61课练习

已知三角函数值求角 篇2

  (第一课时)

  一.教学目标 

  1.理解反正弦、反余弦、反正切的意义,并会用反三角符号表示角.

  2.掌握用反三角表示 中的角.

查看全文

三角函数教案(精选4篇)

三角函数教案 篇1

  1、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:

  即:一角的正弦大于另一个角的余弦。

  2、若 ,则 ,

  3、 的图象的对称中心为 ( ),对称轴方程为 。

  4、 的图象的对称中心为 ( ),对称轴方程为 。

  5、 及 的图象的对称中心为 ( )。

  6、常用三角公式:

  有理公式: ;

  降次公式: , ;

  万能公式: , , (其中 )。

  7、辅助角公式: ,其中 。辅助角 的位置由坐标 决定,即角 的终边过点 。

  8、 时, 。

  9、 。

  其中 为内切圆半径, 为外接圆半径。

  特别地:直角 中,设c为斜边,则内切圆半径 ,外接圆半径 。

  10、 的图象 的图象( 时,向左平移 个单位, 时,向右平移 个单位)。

  11、解题时,条件中若有 出现,则可设 ,

  则 。

  12、等腰三角形 中,若 且 ,则 。

  13、若等边三角形的边长为 ,则其中线长为 ,面积为 。

  14、 ;

三角函数教案 篇2

  二、复习要求

  1、 三角函数的概念及象限角、弧度制等概念;

  2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;

  3、三角函数的图象及性质。

  三、学习指导

  1、角的概念的推广。从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。

查看全文
目录