七年级数学上册教案(精选15篇)
七年级数学上册教案 篇1
总时:1时
第1时, 备时间:开学第十五周 上时间:第十六周
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.
2 .近似数和有效数字 并按要求取近似数.
3.从统计图中获取信息 并用统计图形象地表示数据.
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感.
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.
(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的勇气.
二、教学重点:1.感受较小的数据.
2.用科学记数法表示较小的'数.
3.近似数和有效数字 并能按要求取近似数.
4.读懂统计图 并能形象、有效地用统计图描述数据.
教学难点:形象、有效地用统计图描述数据.
教学过程:.创设情景 引入新
三.讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明.
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.
(2)生物学家发现一种病毒的长度约为0.000043毫米;
七年级数学上册教案模板(通用5篇)
七年级数学上册教案模板 篇1
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解.
课堂教学过程
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
七年级数学上册:绝对值与相反数教学案(精选2篇)
七年级数学上册:绝对值与相反数教学案 篇1
学习目标:1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2.会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______, 的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。
例3.求6、-6、14 、-14 的绝对值。
小节与思考:
华师大七年级数学上册教案(通用8篇)
华师大七年级数学上册教案 篇1
教学目标:
1、知道有理数加法的意义和法则
2、会用有理数加法法则正确地进行有理数的加法运算
3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点:
有理数加法则的探索及运用
教学难点:
异号两数相加的法则的`理解及运用
教学过程:
一、创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、探求新知
1、甲、乙两队进行足球比赛,
(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
冀教版七年级数学上册《合并同类项》说课稿(精选6篇)
冀教版七年级数学上册《合并同类项》说课稿 篇1
我是来自××中学的.我的说课稿内容是合并同类项.下面我就教 材分析、教法、学法、教学程序、教学评价五个方面进行设计说明.
一、教材分析
㈠地位、作用
本节课在学习了单项式、多项式及其有关概念之后,以同类项的概念、合并同类项的法则及其运用为教学内容.合并同类项是整式运算的基础,而整式的运算对学好初中数学有着十分重要的作用.
㈡教学目标
⒈知识目标:①理解同类项的概念,并能辨别同类项;② 掌握合并同类项的法则,并能熟练运用.
⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力.
⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到 一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育.
㈢重点、难点
重点是同类项的概念、合并同类项的法则及其运用法则进行计算.
难点是同类项定义的归纳、概括.
二、教法
根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我将采用探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力.
七年级数学上册复习提纲(通用2篇)
七年级数学上册复习提纲 篇1
第一章 有理数
1.1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。
(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。
2.数轴
(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
(2)数轴三要素:原点、正方向、单位长度。
(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。
(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法