平行线的性质教案

时间:2025-04-05

《平行线的性质》(精选13篇)

《平行线的性质》 篇1

  教学建议

  1、教材分析

  (1)知识结构

  :

  (2)重点、难点分析

  本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

  本节内容的难点是理解与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是.

  2、教法建议

  由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

  (1)讲授新课

  首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

查看全文

5.3平行线的性质(精选12篇)

5.3平行线的性质 篇1

  教学建议

  1、教材分析

  (1)知识结构

  :

  (2)重点、难点分析

  本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

  本节内容的难点是理解与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是.

  2、教法建议

  由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

  (1)讲授新课

  首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

查看全文

10.3平行线的性质(通用14篇)

10.3平行线的性质 篇1

  教学建议

  1、教材分析

  (1)知识结构

  :

  (2)重点、难点分析

  本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

  本节内容的难点是理解与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是.

  2、教法建议

  由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

  (1)讲授新课

  首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式

查看全文

平行线的性质(通用15篇)

平行线的性质 篇1

  教学目标

  1.使学生理解平行线的性质和判定的区别.

  2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

  重点难点

  重点:平行线的三个性质.

  难点:平行线的三个性质和怎样区分性质和判定.

  关键:能结合图形用符号语言表示平行线的三条性质.

  教学过程

  一、复习

  1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

  2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

  二、新授

  1.实验观察,发现平行线第一个性质

  请学生画出下图进行实验观察.

  设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?

  请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?

  平行线性质1(公理):两直线平行,同位角相等.

  2.演绎推理,发现平行线的其它性质

  (1)已知:如图,直线ab,cd被直线ef所截,ab∥cd.

  求证:∠1= ∠2.

  (2)已知:如图2-64,直线ab,cd被直线ef所截,ab∥cd.

  求证:∠1+∠2=180°.

  在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.

  3.平行线判定与性质的区别与联系

  投影:将判定与性质各三条全部打出.

  (1)性质:根据两条直线平行,去证角的相等或互补.

  (2)判定:根据两角相等或互补,去证两条直线平行.

  联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

  三、例题

  例2如图所示,ab∥cd,ac∥bd.找出图中相等的角与互补的角.

查看全文

2.3 平行线的性质(精选13篇)

2.3 平行线的性质 篇1

  教学目标

  1.使学生理解平行线的性质和判定的区别.

  2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

  重点难点

  重点:平行线的三个性质.

  难点:平行线的三个性质和怎样区分性质和判定.

  关键:能结合图形用符号语言表示平行线的三条性质.

  教学过程

  一、复习

  1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

  2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

  二、新授

  1.实验观察,发现平行线第一个性质

  请学生画出下图进行实验观察.

  设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?

  请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?

  平行线性质1(公理):两直线平行,同位角相等.

  2.演绎推理,发现平行线的其它性质

  (1)已知:如图,直线ab,cd被直线ef所截,ab∥cd.

  求证:∠1= ∠2.

  (2)已知:如图2-64,直线ab,cd被直线ef所截,ab∥cd.

  求证:∠1+∠2=180°.

  在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.

  3.平行线判定与性质的区别与联系

  投影:将判定与性质各三条全部打出.

  (1)性质:根据两条直线平行,去证角的相等或互补.

  (2)判定:根据两角相等或互补,去证两条直线平行.

  联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

  三、例题

  例2如图所示,ab∥cd,ac∥bd.找出图中相等的角与互补的角.

查看全文

《平行线的性质》教学设计(通用4篇)

《平行线的性质》教学设计 篇1

  广西北海市第六中学 李时丰

  一、教学目标

  1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

  2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。

  3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。

  4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。

  为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

  二、教学重点和难点

  重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。

  难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。

  三、教材分析

  平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。

  教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。

查看全文
目录