平面直角坐标系教案

时间:2025-04-05

《平面直角坐标系》教案(通用14篇)

《平面直角坐标系》教案 篇1

  活动1:知识回顾

  1、请学生展示自己设计的知识结构图

  2、教师展示知识结构图

  活动2:知识落实

  1、基础训练

  复习各个知识点及平时解题应注意的地方,进行巩固各知识点的基础题训练。

  2、能力提高

  把本章内容和以前的知识点联系起来,解决问题。

  3应用拓展(合作探究)

  春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。

  活动3:知识检测

  游戏环节(快乐之旅)

  7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你周围的老师或同学.

  活动4:小结提升

  通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。

  活动5:布置作业

  1、必做题:P96—3、4、7

  2、选做题:P97—9、10

  3、探究题

  利用本章的基础知识分析问题,解决问题。

  学生思考交流

  提出解决问题的策略。

  学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。

《平面直角坐标系》教案 篇2

  通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数。

  另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数。

查看全文

《平面直角坐标系》优秀教案(通用15篇)

《平面直角坐标系》优秀教案 篇1

  一.利用已有知识,引入

  1.如图,怎样说明数轴上点A和点B的位置.

  2.根据下图,你能正确说出各个象棋子的位置吗?

  二.明确概念

  平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangularcoordinatesystem)。水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。

  点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标.表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值.

  例1:写出图中A、B、C、D点的坐标.

  建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  你能说出例1中各点在第几象限吗?

  例2:在平面直角坐标系中描出下列各点。

  A(3,4);B(-1,2);C(-3,-2);D(2,-2)

  问题1:各象限点的坐标有什么特征?

  三.深入探索

  探索:

  识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

  [小结]

  1.平面直角坐标系

  2.点的坐标及其表示

  3.各象限内点的坐标的特征

  4.坐标的简单应用?

《平面直角坐标系》优秀教案 篇2

  一:教学目标

  1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

查看全文

平面直角坐标系教案(精选11篇)

平面直角坐标系教案 篇1

  一.利用已有知识,引入

  1.如图,怎样说明数轴上点A和点B的位置.

  2.根据下图,你能正确说出各个象棋子的位置吗?

  二.明确概念

  平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangularcoordinatesystem)。水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。

  点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标.表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值.

  例1:写出图中A、B、C、D点的坐标.

  建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  你能说出例1中各点在第几象限吗?

  例2:在平面直角坐标系中描出下列各点。

  A(3,4);B(-1,2);C(-3,-2);D(2,-2)

  问题1:各象限点的坐标有什么特征?

  三.深入探索

  探索:

  识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

  [小结]

  1.平面直角坐标系

  2.点的坐标及其表示

  3.各象限内点的坐标的特征

  4.坐标的简单应用?

平面直角坐标系教案 篇2

  【温故互查】

  填空:①规定了、的直线叫做数轴。

  ②数轴上原点及原点右边的点表示的数是;原点左边的点表示的数是。

  ③画数轴时,一般规定向(或向)为正方向。

查看全文

平面直角坐标系(通用12篇)

平面直角坐标系 篇1

  一:教学目标 

  1:认识并能画出;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

  2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。

  二:教学重点

  能画出;会根据坐标描出点的位置,由点的位置写出它的坐标。

  三:教学难点 

  能能建立;求出点的坐标,由点的位置写出它的坐标。

  四:教学时间

  三课时

  五:教学过程 

  第一课时

  一)引入新课

  1:要在平面内确定一个地点的位置需要几个数据?

  2:练习如图  你能确定各个景点的位置吗?“大成殿”在“中心广场”西、南各多少个格?“碑林” 在“中心广场”东、北各多少个格?

  二)新课

  1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)

  2:在平面内,两条互相垂直且有公共原点的数轴组成。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)

  3:两条坐标轴把平面分成四部分:右上部分叫第一象限,其它三部分按逆时针方向依次叫第二象限、第三象限、第四象限。

  4:怎样求平面内点的坐标?

查看全文

平面直角坐标系的优秀教学反思(精选12篇)

平面直角坐标系的优秀教学反思 篇1

  这一星期我们针对平面直角坐标系的内容进行了讲解。

  这节课的知识点比较多,对于刚刚接触平面直角坐标系学生来讲是比较难理解的,如果学生不是从“形”的角度去理解,往往就会变成机械的记忆了,光靠机械地记忆那是远远不够的,怎么样让学生更形象更值观点地理解本节课地知识点则成为了这节课设计时的难点。本节课中,我让学生在教室中以第四排同学为X轴,以中间的空行为Y轴建立直角坐标系,将每个学生看作是一个点,让学生说出自己的坐标,从位置之间的关系感受坐标之间的内在联系,这样既能让知识的发现过程更直观更形象,又和学生的实际生活结合了起来。

  首先,我让同一列学生报出自己的坐标,思考他们的坐标有什么样的关系,再让同一排同学报出自己的坐标,思考它们的坐标之间的关系,设计这个环节主要是让学生感受到同一列的学生的横坐标相同,同一排的学生的纵坐标相同,为后面发现对称及平移的点的坐标的关系做下铺垫。然后以游戏的形式分别找出两个关于x轴、y轴及原点对称的两个同学分别报出他们的坐标,思考他们坐标之间的关系,实际教学中学生结合他们得位置关系很快就发现了规律。接着通过一定的情境引入位置的前后左右平移,让学生通过位置的平移感受点平移前后坐标的关系。学生在整个活动过程中不仅仅探究出本节课的所有知识,还能从“形”的角度理解和解释知识。

  平面直角坐标系教学反思3

  在《平面直角坐标系》概念的教学中,情境引入:“如今索马里海盗对国际航运和海上安全构成严重威胁。一艘途经索马里海域的轮船怎样来确定自己的位置?”学生一般都能回答是用经度和纬度来确定它们的位置。再问:“那么单独用经度或纬度一个量来确定它们的位置行吗?”“不行。”“为什么?”学生通过思考交流相互补充举反例的方法体验用一对数确定一个物体位置的合理性。然后问:“同学们那么你们现在的`位置怎么确定下来?”学生:“我在第3小组第4排。”“很好,那么单独用小组数或排数能否确定你的位置?”“不能。”然后让第3小组的学生站起来,第4排的学生也站一下,通过实际情境进一步体验用一对数来确定平面上一点位置的正确性。然后再问:“把教室的右墙角的两条墙角线分别看作是0排0组,请同学们分别说出自己的位置。”用(x,y)表示,x表示组数,y表示排数,在这过程中学生巩固了用一对有序实数来确定平面上一点的方法。然后要同学们考虑这时隔壁班的同学的位置该怎样确定,通过学生自己的交流、讨论得到了“平面直角坐标系”的基本框架。

查看全文

《平面直角坐标系》的教案(精选8篇)

《平面直角坐标系》的教案 篇1

  教学目标:

  1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

  2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

  教学重点:理解有序数对的概念,用有序数对来表示位置。

  教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

  教学过程

  一、创设问题情境,引入新课

  展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

  原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

  二、师生共同参于教学活动

  (1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

  师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

  生:不能,要确定还必须知道“排数”。

  (2)教师书写平面图通知,由学生分组讨论。

  今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。

  师:你们能明白它的意思吗?

  学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

  师:请同学们思考以下问题:

查看全文
目录