立体几何教案

时间:2025-04-05

立体几何教案

1、空间一点 位于不共线三点 、 、 所确定的平面内的充要条件是存在有序实数组 、 、 、 ,对于空间任一点 ,有 且 ( 时常表述为:若 且 ,则空间一点 位于不共线三点 、 、 所确定的平面内。)
2、若多边形的面积为 ,它在一个平面上的射影面积为 ,若多边形所在的平面与这个平面所成的二面角为 ,则有 。(射影面积公式,解答题用此须作简要说明)
3、经过平面外一点只有一个平面和已知平面平行。
4、过一点和一个平面垂直的直线有且只有一条;过一点和一条直线垂直的平面有且只有一个。
5、经过两条异面直线中的一条,只有一个平面与另一条直线平行。
6、三个两两垂直的平面的交线两两垂直。
7、对角线相等的平行六面体是长方体。
8、线段垂直平分面内任一点到这条线段两端点的距离相等。
9、经过一个角的顶点引这个角所在平面的斜射线,设它和已知角两边的夹角为锐角且相等,则这条斜射线在这个平面内的射影是这个角的平分线。(斜射线上任一点在这个平面上的射影在这个角的平分线上)
10、如果一个角 所在平面外一点到这个角两边的距离相等,那么这点在平面 上的射影,在这个角的平分线上。(解答题用此须作简要证明)
11、若三棱锥的三条侧棱相等或侧棱与底面所成的角相等,那么顶点在底面上的射影是底面三角形的外心。
(1)当底面三角形为直角三角形时,射影落在斜边中点上。
(2)当底面三角形为锐角三角形时,射影落在底面三角形内。
(3)当底面三角形为钝角三角形时,射影落在底面三角形外。
12、如果三棱锥的三个侧面与底面所成的二面角都相等或三棱锥的顶点到底面三条边距离都相等(顶点在底面上的射影在底面三角形内),那么顶点在底面上的射影是底面三角形的内心。

查看全文

高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板(精选2篇)

高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板 篇1

  1、教材结构与内容简析:

  1.1本节内容在全书及章节的地位;

  两平面垂直的判定定理出现在高中立几第一章最后一节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是第二章多面体、旋转体的学习基础,因此,本节的学习有着极其重要的地位。

  1.2数学思想方法分析:

  1.2.1从定理的证明过程,面面垂直可转化为线面垂直,就可以看到数学的化归,"降维"思想。

  1.2.2在教材所提供的材料中,从建构手段角度分析,可以看到归纳思想,而这一思想中包含着重组的意识和能力。

  2、教学目标:

  根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

  2.1基础知识目标:掌握平面与平面垂直的判定定理及其变

  式,能利用它们解决相关的问题。

  2.2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

  2.3创新素质目标:引导学生从日常生活中发现判定定理,培养学生的发现意识和能力;判定定理及变式的教学培养学生的重组意识和能力;判定定理在现实生活中的应用培养学生的应用的意识和能力。

  2.4个性品质目标:培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。

  3、教学重点、难点、关键:

  重点:判定定理的证明及变式探索

查看全文

高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板

  1、教材结构与内容简析:

  1.1本节内容在全书及章节的地位;

  两平面垂直的判定定理出现在高中立几第一章最后一节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是第二章多面体、旋转体的学习基础,因此,本节的学习有着极其重要的地位。

  1.2数学思想方法分析:

  1.2.1从定理的证明过程,面面垂直可转化为线面垂直,就可以看到数学的化归,"降维"思想。

  1.2.2在教材所提供的材料中,从建构手段角度分析,可以看到归纳思想,而这一思想中包含着重组的意识和能力。

  2、教学目标:

  根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

  2.1基础知识目标:掌握平面与平面垂直的判定定理及其变

  式,能利用它们解决相关的问题。

  2.2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

  2.3创新素质目标:引导学生从日常生活中发现判定定理,培养学生的发现意识和能力;判定定理及变式的教学培养学生的重组意识和能力;判定定理在现实生活中的应用培养学生的应用的意识和能力。

  2.4个性品质目标:培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。

  3、教学重点、难点、关键:

  重点:判定定理的证明及变式探索

查看全文

立体几何新题型的解题技巧

【命题趋向】
在高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系.
2.多面体中线面关系论证,空间"角"与"距离"的计算常在解答题中综合出现.
3.多面体及简单多面体的概念、性质多在选择题,填空题出现.
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.
【考点透视】
(a)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.
(b)版.
①理解空间向量的概念,掌握空间向量的加法、减法和数乘.
②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.
③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.
④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.
⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.
⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.
⑦会画直棱柱、正棱锥的直观图.
空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.

查看全文

对一节立体几何专题课的回顾

本节专题课以“探索线面关系的核心与枢纽”为中心,以典型例题为载体,以展示思维活动为主线,接着以“提出问题----研讨问题----发现规律----探索结论”的模式,突出培养学生善于发现,敢于探索的创造性思维能力。以下四个方面阐述本节课的设想。

一、关于教材与学情分析

1.教材分析

通过对立体几何第一章的学习我们会感悟到:平面的基本性质是立体几何的基础,线面关系是中心内容、重点内容,而线面关系中的垂直关系又是重点内容的核心,是一根主线,它与平行的问题、垂直问题、距离和角的求解有着密切的关系。事实上,立体几何中有关线面关系的许多“问题的主题眼”往往都在于垂直关系的识别、论证、巧用与挖掘。

2.学情分析

每当立几第一章的教与学过后,从整体上看,学生对直线和平面位置关系中的概念、判定和性质以及距离和三大角的要领和求法已经基本掌握,对解证有关平行、垂直、距离和角等重点内容题目的技能正在形成,对标志着空间想象能力的观察、判断。绘制立体图形的能力开始适应和习惯;但是不少学生对直线、平面位置关系的诸多要领判断和性质和内在联系、地位关系,核心枢纽之所在尚茫然,往往处于一种对号入座的状态,解证题还不够胸有成竹、运用自如,空间想象能力特别是对变式图形中举足轻重的生趣关系的识别、判断能力还有待提高。本节课正是通过对典型例题的剖析,引导学生发现其核心,同过寻求探索出解证垂直关系问题的思维通径,为今后的学习能够举一反三、摆脱题海奠定基础。

查看全文

几何体画法(精选3篇)

几何体画法 篇1

  美术教案-几何体画法

  石膏几何体画法教案

  一﹑了解画石膏几何体的意义

  常见的几何体教材有:锥体﹑球体﹑六棱柱体﹑圆柱体和方体等。

  1﹑为什么石膏几何体是初学绘画的必修课?

  因为几何体在结构上单纯,也是一切复杂形体最基本的组成和表现形式,只有先进行石膏几何体的绘画训练,能让大家比较容易的掌握最基本的素描造型方法,和初步的掌握素描五大调子﹑形体结构以及透视的变化。

  2﹑几何体一般采用石膏做材料,在质地上比较单纯,也暂时不用考虑固有色对形体明暗的干扰,有利于初学者集中精力学习光对形体的影响,掌握色调的基本规则。

  二﹑几何体的透视原理

  透视的种类:平行透视﹑成角透视﹑散点透视。

  1﹑平行透视:平行透视也叫一点透视,即物体向视平在线某一点消失。

  2﹑成角透视:成角透视也叫二点透视,即物体向视平在线某二点消失。

  二﹑透视在绘画的特性

  1﹑近大远小:近大远小是视觉自然现象,正确利用这种性质有利于表现物体的纵深感和体积感,从而在二维的画面上来表现出三维的体积空间。

  2﹑近实远虚:由于视觉的原因,近处的物体感觉会更清晰,而远处的物体感觉会有些模糊,这一现象在绘画中也经常用来表现物体的纵深感。事实上,在绘画过程中,往往会对近实远虚更加以强调。

  (另外应注意的是:并非在所有的绘画过程中都遵守“近实远虚”这一规则,在一幅作品中主与次的关系往往更为重要,主体物的实和次体物的虚是更好的视觉导向,这也是艺术优于现实的取舍和区别,)

查看全文
目录