近似数教学反思

时间:2025-04-05

《求一个近似数》教学反思(通用3篇)

《求一个近似数》教学反思 篇1

  本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

  成功之处:

  1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

  2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

  3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

  4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。

  不足之处:

  1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

  2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。

查看全文

《求一个近似数》教学反思

  以下是小学数学《求一个近似数》的教学反思范文,欢迎阅读参考!

  求一个小数的近似数教学反思一:

  本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

  成功之处:

  1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

  2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

  3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

  4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。

  不足之处:

  1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

查看全文

《近似数与有效数字》教学反思

  
  本案例是一堂新教材新教法的课例.在设计上不同于过去的讲解式、问答式教学,而是充分利用学生参与学习与探讨的热情,让学生充分发表意见,通过对问题的争论与探讨,得出正确的结论.这有利于学生的学习与记忆.在课的开始,设计一些问题,进行小组讨论,再针对相关问题展开.考虑到学生年龄特点,有针对性地对近似数的概念、近似程度(尤其是科学记数法和带单位的情况)进行了讨论和解答,取得了较好的效果,但也存在一些问题待后解决. 

(1)为什么使用近似数的原因、使用近似数的意义没有在课例中讲述不太清楚. 

(2)学生对形如2.4万、3.05×104的近似程度的理解及有效数字的计算仍然存在一定的问题. 

查看全文

积的近似数教学反思

  积的近似数教学反思要从哪方面写?下面是由小编为大家带来的关于积的近似数教学反思,希望能够帮到您!

  积的近似数教学反思一

  数学课程标准指出:“人人能获得良好的素质教育,不同的人在数学上得到不同的发展。”要使不同的学生在每一节数学课上有不同的收获,感受到数学的乐趣,从而激发学生学习的原动力。因此在本课程的研磨过程中,我发现以下这几个环节尤为必要:

  1.复习数位顺序表

  求积的近似数的方法所用的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习,复习工作主要有以下两大亮点:

  (1)我首先考虑到学困生学习基础较弱,他们连小数点左右两边的数位都不了解,如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位呢?学生回答时,可见中等生和学困生一时还反映不过来。最后通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。

  (2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识,建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说,是有利的。

查看全文

《函数》教学反思(精选8篇)

《函数》教学反思 篇1

  初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解 .                                                                           

  在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.

  总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.  

  初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解 .                                                                           

查看全文

《一位数除两位数商两位数》教学反思

《一位数除两位数商两位数》教学反思
本课是人教版三年级下期第二单元的一节课,这部分内容是在口算除法及初步学会表内除法竖式笔算的基础上进行教学的。首先安排了口算除法和表内除法竖式的笔算练习,为学习新课做了铺垫。新授课安排了两道除法例题。分别是42÷2和52÷2。先让学生尝试的用笔算算出结果,接着老师边板书边讲解正确的笔算方法,接着让学生比较两道例题笔算中有什么不同,突出当十位商完后有剩余的数,把它和各位的数和起来,继续除。然后安排了14道笔算练习就是书中本课后的做一做两道题。
在教学例1中,侧重于让学生了解除法笔算顺序和商的书写位置。可太注重书写格式,把对算理的理解教学放的弱了点,有些孩子对这样的书写理解比较模糊。在练习中出现了不规范的书写格式。在教学例2中,“52÷2”是被除数十位上除后有余数的,也是所有用一位数除多位数的基础。着重让学生掌握“每求出一位商,余数都必须比除数小”和“每次余下的数要与被除数下一位的数合并再继续除”。为此先让学生在例1的基础上用自己喜欢的算法先尝试,大多数学生能掌握当十位上商完以后有余数,余数一定比除数小,而且要把十位上余的数和个位上的数和起来继续除。整节课教学环节比较清楚,每个环节还是能很自然的连贯起来,大多数学生掌握的情况比较好。但在其中还是有需要改进的地方,比如复习中安排的听算题数多了,花费了许多时间使后面学生练习的时间少了,而且复习中可以重点复习口算除法的方法,更好的做好新课的铺垫。在教学例1后应该将怎样思考的方法板书在黑板上,教学例2后把如果当十位上有余下来的数,把它和个位上的数和起来继续除,我在教学例2时,应该让学生说一说计算过程,也就是让学生说算理,我总怕学生说不好,自己引导学生一起说,表现出老师不信任学生,在今后教学中让学生多说,他们会说了也就明白了算理当然也就会做一位数除两位数的笔算除法,另外,在讲完例2和做过几道练习后我总结了三句话:(1)除法从高位除起。(2)除到哪位商就写在那一位上面。(3)哪一位除后有余数就和下一位合并在一起继续除。这里总结除法计算法则还过早,第3点应直接说十位余下的数要与个位上的数合并再继续除。这样就更能突出本节课所学重难点,学生也更容易理解和接受。

查看全文
目录