解一元一次方程教案

时间:2025-04-05

解一元一次方程教案(精选8篇)

解一元一次方程教案 篇1

  一、教学目标

  (一).知识与技能

  会利用合并同类项解一元一次方程.

  (二).过程与方法

  通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

  (三).情感态度与价值观

  开展探究性学习,发展学习能力.

  二、重、难点与关键

  (一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

  (二).难点:会列一元一次方程解决实际问题.

  (三).关键:抓住实际问题中的数量关系建立方程模型.

  三、教学过程

  (一)、复习提问

  1.叙述等式的两条性质.

  2.解方程:4(x- )=2.

  解法1:根据等式性质2,两边同除以4,得:

  x- =

  两边都加 ,得x= .

  解法2:利用乘法分配律,去掉括号,得:

  4x- =2

  两边同加 ,得4x=

  两边同除以4,得x= .

  (二)、新授

  公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

  问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

  分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

  题目中的相等关系为:三年共购买计算机140台,即

  前年购买量+去年购买量+今年购买量=140

查看全文

3.3 解一元一次方程(精选16篇)

3.3 解一元一次方程 篇1

  4.2  解一元一次方程(4)教学目标1.掌握解一元一次方程的一般步骤。2.会根据一元一次方程的特点灵活处理解方程的步骤,化为ax=b(a≠0)的形式。 教学重、难点重点:掌握解一元一次方程的基本方法.难点:正确运用去分母、去括号、移项等方法,灵活解一元一次方程.教学过程一 激情引趣,导入新课1 解方程:4x-3 (20-x )=6x-7 ( 9-x )思考:解一元一次方程时,去括号要注意什么?移项要注意什么?2 求下列各数的最少公倍数:(1)12,24 ,36 (2) 18,16 ,24二 合作交流,探究新知1动脑筋:一件工作,甲单独做需要15天完成,乙单独做需要12天完成,现在甲先单独做1天,接着乙又单独做4天,剩下的工作由甲、乙两人合做,问合做多少天可以完成全部工作任务?(先独立做,做完后交流做法,认真听出同学意见,老师点评)通过这个问题,请你归纳解一元一次方程有哪些步骤?先去____,后去_____,再_____、_______得到标准形式ax=b(a≠0),最后两边同除以______的系数。考考你:下面各题中的去分母对吗?如不对,请改正。(1) 去分母得5x-2x+3=2 (2) 去分母得2x-(2x+1)=6(3) 去分母得4(3x+1)+25x=802 尝试练习(注意养成口算经验的好习惯)解方程: 3 比一比,看谁算得准(注意养成口算经验的好习惯)解方程:(1) ,       (2) 三 应用迁移,巩固提高1 化繁为简例1 解方程: 2 化为一元一次方程求解例2 若关于x的一元一次方程 的解是x= -1,则k的值是(  )a        b    1    c        d    03 实践应用例3 学校准备组织教师和优秀学生去大洪山春游,其中教师22名现有甲乙两家旅行社,两家定价相同,但优惠方式不同,甲旅行社表示教师免费,学生按八折收费,乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲乙两家旅行社收费一样,请你算出有多少名学生参加春游。四 冲刺奥赛,培养智力例4 解方程: 五 课堂练习巩固提高  解方程 : 六 反思小结拓展提高解一元一次方程的一般步骤是什么?要注意什么?作业:p 119 8,9

查看全文

3.3解一元一次方程(通用14篇)

3.3解一元一次方程 篇1

  学习目标    1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析培养学生用代数方法解决实际问题的能力。熟练解一元一次方程    2.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。重点:工程中的工作量、工作的效率和工作时间的关系。难点:把全部工作量看作“1”。学习过程 一、复习提问1、解一元一次方程的步骤:      

  步骤

  方法

  注         意   依  据

  去分母在方程两边都乘以________________不要漏乘不含分母的项,分子是一个整体,去分母后应加括号

  去括号先去_______,再去______,最后______。带着符号计算,不要漏乘

  移  项

  把___________项都已到方程的一边,其它项移到另一边。移项要_________

  合  并把方程两边分别合并,化成ax=b的形式。合并只是系数相加,字母及指数不变

  系数化为1在方程两边都除以未知数的系数_______,得到方程的解x=b/a分子、分母不要_______2、解方程  1)                2) 3.一件工作,如果甲单独做2小时完成,那么甲独做1小时完成全     部工作量的       ?4.一件工作,如果甲单独做a小时完成,那么甲独做x小时,完成     全部工作量的       ?    5.工作量、工作效率、工作时间之间有怎样的关系?二、学生自学p101 例5 分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了么?提出什么问题?    注意:工作总量看成         2.还可以怎样用列方程解决这个问题?本题中的等量关系是什么?                                                            3、工作效率为      ,从始至终一部分(即x)人共做       小时,工作量为      两人共做     小时 ,工作量为      方程为                           4、写出完整解题过程:     三、巩固练习1.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是       ,乙每天的工作效率是        ,两人合作3天完成的工作量是          ,此时剩余的工作量是               。2、一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是       ,乙每天的工作效率是        ,两人合作3天完成的工作量是          ,此时剩余的工作量是                   。3、整理一批数据,由一个人做需80小时完成。现在计划由一些人做2小时,再增加5人做8小时,完成这项工作的3/4 。怎样安排参与整理数据的具体人数?4、一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现   由甲独做10小时   (1)剩下的乙独做要几小时完成?      (2)剩下的由甲、乙合作,还需多少小时完成?      (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成? 四、小结     1.本节课主要分析了工作问题中工作量、工作效率和工作时间之  间的关系,即  工作量=工作效率×工作时间工作效率=    工作时间=合效率:各效率之和;   总工作量可看做“1”2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。      3、掌握解一元一次方程的一般步骤,注意易错点五、作业p102:   8题 ,  9 题;  p113:  2题六、课堂检测

查看全文

3.2 解一元一次方程(精选15篇)

3.2 解一元一次方程 篇1

  一、素质教育目标

  (一)知识教学点

  1.要求学生学会用移项解方程的方法.

  2.使学生掌握移项变号的基本原则.

  (二)能力训练点

  由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

  (三)德育渗透点

  用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

  (四)美育渗透点

  用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

  二、学法引导

  1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

  2.学生学法:练习→移项法制→练习

  三、重点、难点、疑点及解决办法

  1.重点:移项法则的掌握.

  2.难点:移项法解一元一次方程的步骤.

  3.疑点:移项变号的掌握.

  四、课时安排:3课时

  五、教具学具准备

  投影仪或电脑、自制胶片、复合胶片.

  六、师生互动活动设计

  教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

  (出示投影1)

  利用等式的性质解方程

  (1) ;x-7=5     (2) ;7x=6x-4

  解:方程的两边都加7,   解:方程的两边都减去 ,

  得  ,x=5+7      得   ,7x-6x=-4

查看全文

4.2解一元一次方程(精选15篇)

4.2解一元一次方程 篇1

  3.3  解一元一次方程

  一、学习目标

  1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

  2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

  二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

  难点:去分母法则的正确运用。

  三、学习过程:(一)、复习导入1、解方程:(1) ;    (2)2(x-2)-(4x-1)=3(1-x)

  2、回顾:解一元一次方程的一般步骤及每一步的依据3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____   棵。(二)学生自学p99--100根据等式性质    ,方程两边同乘以       ,得                                             即得不含分母的方程:4x-3x=960                  x=960

  像这样在方程两边同时乘以                        ,去掉分数的分母的变形过程叫做                。依据是                                          (三)例题:例1 解方程: 解 :去分母,得                                依据                       去括号,得                                依据                              移项,得                    依据                         合并同类项,得                  依据                  系数化为1,得   依据                注意:1)、分数线具有              2)、不含分母的项也要乘以              (即不要漏乘)

查看全文

解一元一次方程(通用16篇)

解一元一次方程 篇1

  教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力.教学重点:含有以常数为分母的一元一次方程的解法.教学难点:正确地去分母.(一)   情境创设: 与书同(二)   探索活动 由情景问题入手,引导学生审清题意,根据等量关系:学生总数的 +学生总数的 +学生总数的 +3=学生总数列出方程.即设毕达哥拉斯的学生有x名,想一想由题意得 + + +3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.思考: (1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程 - = -1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得                          移项,得                            合并同类项,得                      -8x=-4,系数化1,得  x=  (1)为了去分母,方程两边应乘以什么数?                           .(2)去分母应注意什么?                                           .例2、解方程 = +1                    例 3、 (2x-5)= (x-3)- 去分母时须注意:(1)                        (2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如 ,- 乘以6,8……例4、 - =3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误.

查看全文
目录