下学期 4.8正弦函数、余弦函数的图像和性质(通用3篇)
下学期 4.8正弦函数、余弦函数的图像和性质 篇1
4.8 正弦函数、余弦函数的图像和性质(第三课时)
(一)教学具准备
直尺、投影仪.
(二)教学目标
1.理解 , 的周期性概念,会求周期.
2.初步掌握用定义证明 的周期为 的一般格式.
(三)教学过程
1.设置情境
自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角 的终边每转一周又会与原来的位置重合,故 , 的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念——函数的周期性(板书课题)
2.探索研究
(1)周期函数的定义
引导学生观察下列图表及正弦曲线
0
0
1
0
-1
0
1
0
-1
0
正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.
联想诱导公式 ,若令 则 ,由这个例子,我们可以归纳出周期函数的定义:
对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,那么函数 叫做周期函数,非零常数 叫做这个函数的周期.
如 , ,…及 , …都是正弦函数的周期.
注意:周期函数定义中 有两点须重视,一是 是常数且不为零;二是等式必须对定义域中的每一个值时都成立.
师:请同学们思考下列问题:①对于函数 , 有 能否说 是正弦函数 的周期.
生:不能说 是正弦函数 的周期,这个等式虽成立,但不是对定义域的每一个值都使等式 成立,所以不符合周期函数的定义.
函数的图像(通用12篇)
函数的图像 篇1
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图像上由自变量的值求出对应的函数的近似值.
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.
难点:对已知图象能读图、识图,从图象解释函数变化关系.
教学过程 设计
(一)复习
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5)).
5.请在坐标平面内画出A点.
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.
这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示.
具体做法是
第一步:列表.(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值.
(这种用表格表示函数关系的方法叫做列表法)
第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.
第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象.
函数的图像
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图像上由自变量的值求出对应的函数的近似值.
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.
难点:对已知图象能读图、识图,从图象解释函数变化关系.
教学过程 设计
(一)复习
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5)).
5.请在坐标平面内画出A点.
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.
这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示.
具体做法是
第一步:列表.(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值.
(这种用表格表示函数关系的方法叫做列表法)
第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.
第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象.
下学期 4.8 正弦函数、余弦函数的图像和性质3
4.8 正弦函数、余弦函数的图像和性质(第三课时)
(一)教学具准备
直尺、投影仪.
(二)教学目标
1.理解 , 的周期性概念,会求周期.
2.初步掌握用定义证明 的周期为 的一般格式.
(三)教学过程
1.设置情境
自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角 的终边每转一周又会与原来的位置重合,故 , 的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念——函数的周期性(板书课题)
2.探索研究
(1)周期函数的定义
引导学生观察下列图表及正弦曲线
0
0
1
0
-1
0
1
0
-1
0
正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.
联想诱导公式 ,若令 则 ,由这个例子,我们可以归纳出周期函数的定义:
对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,那么函数 叫做周期函数,非零常数 叫做这个函数的周期.
如 , ,…及 , …都是正弦函数的周期.
注意:周期函数定义中 有两点须重视,一是 是常数且不为零;二是等式必须对定义域中的每一个值时都成立.
师:请同学们思考下列问题:①对于函数 , 有 能否说 是正弦函数 的周期.
生:不能说 是正弦函数 的周期,这个等式虽成立,但不是对定义域的每一个值都使等式 成立,所以不符合周期函数的定义.
下学期 4.8 正弦函数、余弦函数的图像和性质2
4.8 正弦函数、余弦函数的图像和性质(第二课时)
(一)教学具准备
直尺,投影仪.
(二)教学目标
1.掌握 , 的定义域、值域、最值、单调区间.
2.会求含有 、 的三角式的定义域.
(三)教学过程
1.设置情境
研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2.探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索 , 两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5) 的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是 .
(2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.
余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.
(4)正负值区间:
( )
(5)零点: ( )
( )
3.例题分析
【例1】求下列函数的定义域、值域:
(1) ; (2) ; (3) .
下学期 4.8正弦函数、余弦函数的图像和性质1
4.8 正弦函数、余弦函数的图像和性质(第一课时)
(一)教学具准备
直尺、圆规、投影仪.
(二)教学目标
1.了解作正、余弦函数图像的四种常见方法.
2.掌握五点作图法,并会用此方法作出 上的正弦曲线、余弦曲线.
3.会作正弦曲线的图像并由此获得余弦曲线图像.
(三)教学过程 (可用课件辅助教学)
1.设置情境
引进弧度制以后, 就可以看做是定义域为 的实变量函数.作为函数,我们首先要关注其图像特征.本节课我们一起来学习作正、余弦函数图像的方法.
2.探索研究
(1)复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?(师画图1)
设任意角 的终边与单位圆相交于点 ,过点作 轴的垂线,垂足为 ,则有向线段 叫做角 的正弦线,有向线段 叫做角 的余弦线.
(2)在直角坐标系中如何作点
由单位圆中的正弦线知识,我们只要已知一个角 的大小,就能用几何方法作出对应的正弦值 的大小来,请同学们思考一下,如何用几何方法在直角坐标系中作出点 ?
教师引导学生用图2的方法画出点 .
我们能否借助上面作点 的方法在直角坐标系中作出正弦函数 , 的图像呢?
①用几何方法作 , 的图像
我们知道,作函数的图像的步骤是:列表、描点、连结;如果我们用列表法得出各点的坐标,就会因各点的纵坐标都是查三角函数表得到的数值不够精确,使得描点后画出的图像误差也大,为克服这一不足,我们用前面作点 的几何方法来描点,从而使图像的精确度有了提高.