《分式方程》教学反思(精选2篇)
《分式方程》教学反思 篇1
在本课的教学过程中,我认为应从这样的几个方面入手:
1. 分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2. 分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4. 对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
《分式方程》教学反思 篇2教学反思就是教师相互观摩彼此的教学,详细描述他们所看到的情景,对此进行讨论分析。以下是小编为大家收集的八年级数学《分式方程》教学反思,仅供参考!
八年级数学《分式方程》教学反思一
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
《分式方程》教学反思
在本课的教学过程中,我认为应从这样的几个方面入手:
1. 分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
初二数学分式方程教案(精选3篇)
初二数学分式方程教案 篇1
一,内容综述:
1、解分式方程的基本思想
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程。即
分式方程整式方程
2、解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母为0。
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答
(2)换元法
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。
可化为一元二次方程的分式方程(精选6篇)
可化为一元二次方程的分式方程 篇1
一、教学目标
1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2.通过本节课的教学,向学生渗透“转化”的数学思想方法;
3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.
二、重点·难点·疑点及解决办法
1.教学重点:的解法.
2.教学难点 :解分式方程,学生不容易理解为什么必须进行检验.
3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.
4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.
三、教学步骤
(一)教学过程
1.复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
(3)解方程,并由此方程说明解方程过程中产生增根的原因.
通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同.
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
可化为一元一次方程的分式方程(通用6篇)
可化为一元一次方程的分式方程 篇1
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握的一般解法.
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点
1.教学重点:
(1)的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
2.教学难点:理解解分式方程时产生增根的原因.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.
四、教学手段
演示法和同学练习相结合,以练习为主.
五、教学过程
(一)复习及引入新课
1.提问:什么叫方程?什么叫方程的解?
答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
2.
解:(1)当 时,
左边=,
右边=0,
∴左边=右边,
∴
(2)
(3)
3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式: , 根据量间的关系列出方程:
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
(二)新课
板书课题:
板书:分式方程的定义.
分母里含有未知数的方程叫
八年级数学《分式方程》教学反思
教学反思就是教师相互观摩彼此的教学,详细描述他们所看到的情景,对此进行讨论分析。以下是小编为大家收集的八年级数学《分式方程》教学反思,仅供参考!
八年级数学《分式方程》教学反思一
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。
在本课的教学过程中,我认为应从这样的几个方面入手:
1. 分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母