反比例教学设计

时间:2025-04-05

《反比例》教学设计(通用14篇)

《反比例》教学设计 篇1

  [设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

  一、导入:

  同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

  二、练习:

  1、 判断

  (1)一个因数不变,积与另一个因数成正比例。( )

  (2)长方形的长一定,宽和面积成正比例。( )

  (3)大米的总量一定,吃掉的和剩下的成反比例。( )

  (4)圆的半径和周长成正比例。( )

  (5)分数的分子一定,分数值和分母成反比例。( )

  (6)铺地面积一定,方砖的边长和所需块数成反比例。( )

  (7)铺地面积一定,方砖面积和所需块数成反比例。( )

  (8)除数一定,被除数和商成正比例。( )

  2、选择

  (1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量( )

  A、成正比例 B、成反比例 C、不成比例

  (2)和一定,加数和另一个加数( )

  A、成正比例 B、成反比例 C、不成比例

  (3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( )

  A、汽车每次运货吨数一定,运货次数和运货总吨数

  B、汽车运货次数一定,每次运货的吨数和运货总吨数

  C、汽车运货总吨数一定,每次运货的吨数和运货的次数

  3、判断题:自主练习第3题

  学生判断各题中的两个量是不是成反比例。并说说理由。

  重点引导学生运用反比例的意义进行判断。

查看全文

《反比例》教学设计(精选13篇)

《反比例》教学设计 篇1

  教学内容:

  P47~48,例7、正、反比例的比较。

  教学目的:

  进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

  教学过程:

  一、复习

  判断下面两种理成不成比例,成什么比例,为什么?

  (1)单价一定,数量和总价。

  (2)路程一定,速度和时间。

  (3)正方形的边长和它的面积。

  (4)工作时间一定,工作效率和工作总量。

  二、新授。

  1、揭示课题

  2、学习例7

  (1)认识:“千米/时”的读法意义。

  (2)出示书中的问题要求学生逐一回答。

  (3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

  (4)填空:用下面的形式分别表示两个表的内容。

  当一定时,和成比例关系。

  还有什么样的依存关系?

  (5)教师作评讲并。

  (6)用图表示例7中的两种量的关系。

  指导学生描点、连线

  观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

  在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

  用同样的方法观察右表。

  3、正、反比例的特点(异同点)

  由学生比、说

  三、巩固练习

  1、练一练第1、2题

  2、P49第1题。

  四、课堂:

  正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

  五、作业

  P49第2题(1)(4)(5)(6)(9)

  六、课后作业

  1、P49第2题(2)(3)(7)(8)(10)

查看全文

正、反比例量的应用题教学设计

教学内容:苏教版第十二册p51教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。 2、使学生运用正、反比例的意义正确解答应用题。 3、渗透函数的初步思想,建立事物是相互联系的这一辨 证观点,培养学生的判断推理能力和分析能力。教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路教学准备:课件教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象1、判断下面每题中的两种量成什么比例关系?○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间○5全校学生做操,每行站的人数和站的行数2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经x小时。指名学生口答,老师板书。
二、创设情境,探究新知从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)1、教学例1(1)出示例1(课件演示)让学生读题一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?师:你用什么方法解答,给大家介绍一下如何?(自由回答)(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)学生解答如下几种:解法一:140÷2×5=70×5=350千米解法二:140×(5÷2)=140×2.5=350千米如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:a题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?b哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)c它们有什么关系?(行驶的路程和时间成正比例关系)d题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。教师板书:速度一定,路程和时间成正比例。 师追问:两次行驶的路程和时间的什么相等(比值相等)解法三:(用比例方法,怎样列式)解:设甲乙两地间的总路长x千米140 x 或 140:2=x:52 5 2x=140×5 x=350答:甲乙两地之间公路长350千米。小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。2、怎样检验这道题做得是否正确呢?3、变式练习改编题出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?4、教学例2(课件演示)(1)出示例2,学生读题例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。学生利用以前的方法解答。70×5÷4=350÷4=87.5(千米)(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。(4)设每小时行驶x千米(根据反比例的意义,谁能列出方程4x=70×5 x=70×5/4 x=87.5答:每小时行驶87.5千米。师:a)该题中三个量有什么关系?其中哪两种量是相关联的量?b)题中哪一种是固定不变的?从哪里看出来?c)它们有什么关系?d)这道题的 一定, 和 成 比例关系,所以两次行驶的 和 的 是相等的。(5)变式练习(改编题)出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?解:设需要x小时到达87.5x=70×5 x=4答:需要4小时到达。

查看全文

第五单元 正比例和反比例 教学设计

教学内容:本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:认识正、反比例的意义
教学难点:根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:正比例和反比例(4课时)

查看全文

第三单元 比例 教学设计

教学内容:
本单元是在学生理解和掌握比的意义和性质的基础上进行教学的,内容主要包括图形的放大和缩小、比例的意义和性质、认识比例尺以及比例尺的应用等。
本单元的教学内容比较多,编排了6道例题,3个练习和1个实践与综合应用《面积的变化》。
例1、例2、例3、练习九,比例的意义。这部分内容是在学生认识了比的意义以及有关平面图形知识的基础上进行教学的。通过教学,使学生初步理解图形的放大和缩小,并能利用方格纸按指定的比将一个简单图形放大或缩小。
 例4、例5、练习十,比例的基本性质。这部分内容是在学生初步理解比例意义的基础上教学的。通过教学,使学生认识比例的内项和外项,探索并掌握比例的基本性质,学会应用比例的基本性质解比例。
例6、练习十一,比例尺,这部分内容教学比例尺的认识和应用。
面积的变化,这部分内容是结合本单元教学内容安排的一次实践和综合应用,主要目的是让学生经历“猜想——验证”的过程,自主发现平面图形按比例放大后面积的变化规律,进一步体会比例的应用价值,提高学习数学的兴趣。
教材分析:
在六年级(上册),教科书曾经结合分数的认识和计算,教学了比的意义和基本性质,比与分数、除法的关系,求比值和化简比,以及按比例分配的实际问题。在此基础上,本册教科书结合对图形放大和缩小的认识,教学比例的意义和基本性质;利用学生对比例的初步理解,教学正比例和反比例的认识。
教学目标:1. 使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念.

查看全文

按比例分配教学设计(精选3篇)

按比例分配教学设计 篇1

  教学内容:浙江省省编义务教材十二册p,96;例3、例4

  教学目标:

  (1) 联系实际,使学生感知按比例分配的实际意义,初步掌握按比例分配的方法。

  (2) 能运用所学的知识,解决按比例分配的实际问题。

  (3)培养学生观察、归纳和语言表达能力,发扬尝试、合作、协调精神,促进思维能力的发展。

  设计思路:

  1、让学生在现实情境中体会按比例分配的合理性,理解什么是按比例分配。

  按比例分配是一种分配思想,在生活、生产中是很常见的,已学过的平均分其实是按比例分配的一种特例。教学中要通过解决实际生活的问题,让学生了解在生活、生产常常要把一个量按照数量的多少来分配,感悟“按比例分配”存在的价值。但教材中的例题是“蔬菜专业户种蔬菜”和“搅拌混凝土”,这两个材料对于城市的孩子是很陌生的,学生对解决问题的背景不熟悉。所以在设计时换成了“体育老师要把18个篮球分给男、女两组同学,该怎么分?”,让学生讨论,由于学生面临的是自己生活中的问题,学习材料具有丰富的现实背景,于是激发学生产生解决问题的心向,主动地参与探索,寻求解决问题的方法。提出了不同的分配方案(如平均分、男同学多,女同学多、按人数分等),按比例分配是其中的一种方案。而且在解决问题的过程中,每个孩子都能体会到数学其实就在我们的身边,数学源自生活。

  2、尊重学生起点,引导学生自主探索、合作交流,掌握按比例分配的方法。

  按比例分配是在学生已经学习了分数乘法应用题、比例知识、正反比例应用题的基础上学习的,而且学生在平时也有一定的体验。所以在新知形成的过程中,首先让学生根据原有的知识尝试解决问题,变被动接受学习为主动研究性学习,鼓励解决问题策略的多样化,并充分展示学生的思考过程,在解决问题的过程中学生体会到同一问题可以从不同角度去思考,得到不同解决问题的方法,有利于学生多向思维的发展,凸现学生个性化的学习。

查看全文
目录