二次根式教案汇总(精选15篇)
二次根式教案汇总 篇1
【教学目标】
1.运用法则
进行二次根式的乘除运算;
2.会用公式
化简二次根式。
【教学重点】
运用
进行化简或计算
【教学难点】
经历二次根式的乘除法则的探究过程
【教学过程】
一、情境创设:
1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?
2.计算:
二、探索活动:
1.学生计算;
2.观察上式及其运算结果,看看其中有什么规律?
3.概括:
得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:
积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:
1.计算:
2.化简:
小结:如何化简二次根式?
1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;
2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:
(一).P62 练习1、2
其中2中(5)
注意:
不是积的形式,要因数分解为36×16=242.
(二).P67 3 计算 (2)(4)
补充练习:
1.(x>0,y>0)
2.拓展与提高:
化简:1).(a>0,b>0)
2).(y
2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:
小结:二次根式的乘法法则
作业:
1).课课练P9-10
2).补充习题
二次根式教案汇总 篇2教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
二次根式教案(精选13篇)
二次根式教案 篇1
【 学习目标 】
1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
【 学习重难点 】
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
【 学习内容 】课本第2— 3页
【 学习流程 】
一、 课前准备(预习学案见附件1)
学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、 课堂教学
(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。(15分钟左右)
1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段
为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
二次根式(精选12篇)
二次根式 篇1
一、教学目标
1.了解的意义;
2. 掌握用简单的一元一次不等式解决中字母的取值问题;
3. 掌握的性质 和 ,并能灵活应用;
4.通过的计算培养学生的逻辑思维能力;
5. 通过性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)中字母的取值范围.
难点:确定中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
, , , , , , ,
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
, , , 表示的是算术平方根.
(二)引入新课
我们已遇到的 , , ,这样的式子是我们这节课研究的内容,引出:
新课:
定义: 式子 叫做.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a≥0时才叫, 是吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是,而 ,提问学生:2是吗?显然不是,因此二次
根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是?
分析: , , , 、 、 、 四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此, 与 不是.
二次根式教学设计(精选8篇)
二次根式教学设计 篇1
教学目标
1、使学生理解最简二次根式的概念;
2、掌握把二次根式化为最简二次根式的方法。
教学重点和难点
重点:化二次根式为最简二次根式的方法。
难点:最简二次根式概念的理解。
一、导入新课
计算:
我们再看下面的问题:
简,得到
从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。
二、新课
答:
1、被开方数的因数是整数或整式;
2、被开方数中不含能开得尽方的因数或因式。
满足上面两个条件的二次根式叫做最简二次根式。
例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?
解
(1)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的'因式。整数。
(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。
(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。
(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。
(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22。
指出:从(1),(2),(6)题可以看到如下两个结论。
1、在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
2、在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。
例2 把下列各式化为最简二次根式:
分析:把被开方数分解因式或因数,再利用积的算术平方根的性质
二次根式的化简 教学设计(精选5篇)
二次根式的化简 教学设计 篇1
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书
二次根式的化简(通用12篇)
二次根式的化简 篇1
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备