初中数学说课稿

时间:2025-04-05

初中数学说课稿范文(精选13篇)

初中数学说课稿范文 篇1

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的.方法。

  五、说教法、学法

查看全文

初中数学精选说课稿(通用16篇)

初中数学精选说课稿 篇1

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的.方法。

  五、说教法、学法

查看全文

初中数学说课稿(精选15篇)

初中数学说课稿 篇1

  一、教材分析

  (一)地位、作用

  本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。

  (二)教学目标

  根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:

  1、知识与技能

  (1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

  (2)掌握“对顶角相等的性质”。

  (3)理解对顶角相等的说理过程。

  2、过程与方法

  经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。

  3、情感态度和价值观

  通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

  (三)重点,难点

  根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:

  重点:邻补角和对顶角的概念及对顶角相等的性质。

  难点:写出规范的推理过程和对对顶角相等的探索。

  二、教学方法

  在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。

查看全文

初中数学说课稿范文(精选16篇)

初中数学说课稿范文 篇1

  各位评委:

  早上好

  今天我说课的题目是《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算,难点确定为:负数和有理数法则的理解和运用

查看全文

精选初中数学说课稿(精选12篇)

精选初中数学说课稿 篇1

  尊敬的各位专家评委、各位同仁:

  大家好!我是安溪县湖上中学数学教师张象稳,能参加这次说课评比活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是合并同类项。

  以下我就五个方面来介绍这堂课的说课内容:

  一、 教材分析

  (一).教材地位、作用

  本节课选自华东师大版《数学》七年级上§3.4节第2课时内容,是一堂探究活动课。是在结合学生已有的生活经验,引入用字母表示有理数,继而介绍了代数式、代数式的值、整式、同类项以及有理数运算律的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个知识重点,其法则以及去括号与添括号的法则应用是整式加减的重点,是以后学习解方程、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

  (二)、教学重点、难点

  1、重点:合并同类项的法则的运用。

  2、难点:合并同类项的法则的形成过程。

  (三)、教学目标

  根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:

  1.知识目标

  (1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。

查看全文

初中数学说课稿(通用17篇)

初中数学说课稿 篇1

  尊敬的各位专家评委、各位同仁:

  大家好!我是安溪县湖上中学数学教师张象稳,能参加这次说课评比活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是合并同类项。

  以下我就五个方面来介绍这堂课的说课内容:

  一、 教材分析

  (一).教材地位、作用

  本节课选自华东师大版《数学》七年级上§3.4节第2课时内容,是一堂探究活动课。是在结合学生已有的生活经验,引入用字母表示有理数,继而介绍了代数式、代数式的值、整式、同类项以及有理数运算律的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个知识重点,其法则以及去括号与添括号的法则应用是整式加减的重点,是以后学习解方程、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

  (二)、教学重点、难点

  1、重点:合并同类项的法则的运用。

  2、难点:合并同类项的法则的形成过程。

  (三)、教学目标

  根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:

  1.知识目标

  (1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。

查看全文
目录