比的意义教案

时间:2025-04-05

《比的意义》教案(精选13篇)

《比的意义》教案 篇1

  教学目标:

  1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。

  2、通过自主探究,掌握化简比的方法并会化简。

  3、渗透事物是普遍联系的辨证唯物主义观点。

  教学重难点:理解比的基本性质,推导化简比的方法正确化简比。

  教法:引导探究

  教学过程:

  一、导入:

  1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。

  2、提问:根据这些信息,你能提出什么数学问题?

  板书课题:

  二、探究新知:

  1、学生按学习指南自学。

  学习指南:根据题意可以怎样表示长和宽的关系?

  2、汇报自学情况

  3、教师指导:

  长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。

  4、苹果有4个,梨有5个。

  提问:苹果和梨的关系可以怎样说?

  尽量找学困生回答。

  5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。

  6、学生举例。

  请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。

  学生互相讨论后,再指名回答。

  7、指导学生自学教材后,说说比的含义。

  板书课题:比的意义

  3比2 3:2

  2比3 2:3

  100比2 100:2

  两个数相除又叫两个数的比。

  比的各部分名称

查看全文

《比的意义》教案(通用17篇)

《比的意义》教案 篇1

  比 的 意 义

  执教者:庐山一小  丁微

  教学内容:九年义务教育五年制小学(人教版)教科书第61—62页及练习十七的第1---4题。

  教学目标 :

  1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。

  2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。

  教学重点:掌握比的意义

  教学难点 :把两种量组成比,以及在此基础上进行求比值。

  教学过程 :

  一、引探准备

  口答:⒈求一个数是另一个数的几倍或几分之几,怎样计算?

  ⒉分数和除法有什么联系和区别?

  二、引导过程

  ㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

  谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

  同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

  投影:这面国旗,长是3分米,宽是2分米。

  ⒈引导再学。出示初学思考题:

  长是宽的几倍,还可以把长和宽的关系说成什么?

  宽是长的几分之几,还可以把宽和长的关系说成什么?

  ⒉讨论回答思考题

  师:长是宽的几倍,还可以把长和宽的关系说成什么?

  生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

查看全文

《比的意义》教案(精选16篇)

《比的意义》教案 篇1

  比 的 意 义

  执教者:庐山一小  丁微

  教学内容:九年义务教育五年制小学(人教版)教科书第61—62页及练习十七的第1---4题。

  教学目标 :

  1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。

  2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。

  教学重点:掌握比的意义

  教学难点 :把两种量组成比,以及在此基础上进行求比值。

  教学过程 :

  一、引探准备

  口答:⒈求一个数是另一个数的几倍或几分之几,怎样计算?

  ⒉分数和除法有什么联系和区别?

  二、引导过程

  ㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

  谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

  同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

  投影:这面国旗,长是3分米,宽是2分米。

  ⒈引导再学。出示初学思考题:

  长是宽的几倍,还可以把长和宽的关系说成什么?

  宽是长的几分之几,还可以把宽和长的关系说成什么?

  ⒉讨论回答思考题

  师:长是宽的几倍,还可以把长和宽的关系说成什么?

  生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

查看全文

《比的意义》教学反思(精选2篇)

《比的意义》教学反思 篇1

  写好教学反思对老师很重要,下面是由小编为大家带来的关于比的意义教学反思,希望能够帮到您!

  比的意义教学反思一

  《比的意义》这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍分关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。(2)比的后项不能是0。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。

  在学习比的意义的时候,我在学生已有的生活经验的基础上进行教学的。在学生的已知经验里对比已经有了初步的感官认识,在配制安利的洗涤剂的瓶子上按照几比几来配制,学生也能够接触到,这样的例子还有很多。所以一开课,我直接出示,让学生按照2:1来摸红色和黄色的球,学生很轻松的说出红球2个黄球1个,然后引导学生说出其他的情况。进而,让学生总结出只要满足红球是黄球的2倍就满足红球和黄球的比是2:1,再引导学生列出算式。这一环节,就是比的意义第一个层次:表示两个数量间的倍数关系。然后教师反过来问道,那黄球和红球的比是几比几呢?黄球是红球的几分之几呢?引导学生列出算式,这一环节就巩固了比的意义第二个层次:表示两个数量间的分数关系。通过这两个层次的教学学生对于比的意义理解的非常深刻,也达到了预想的教学效果。

查看全文

比的意义优质课教案(通用2篇)

比的意义优质课教案 篇1

  教学内容:

  教科书第48~49页的内容

  教学目标:

  1、使学生理解比的意义,会读,写比,认识比的各个部分名称:掌握求比值的方法,能准确地求出比值。

  2、使学生理解比、分数、除法之间的联系与区别,通过观察和思考,理解数学知识之间是互相联系的,体会变中有不变的思想。

  教学重点:理解比的意义。

  教学难点:理解比和分数。

  教学过程:

  一、引入情境,探究新知

  (一)同类量的比

  播放“神州五号”发射过程视频。

  师:这是20__年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。视频当中出现的宇航员是我国第一位乘坐宇宙飞船登上太空的航天英雄,他叫做?

  (出示教材情境图:杨利伟在飞船 展示国旗)

  师:杨利伟叔叔在飞船了向人们展示了联合国和我国国旗。

  2、提出问题,引发思考。

  师:这面国旗,长15cm,宽10cm,比较这面国旗长和宽的.关系,你会提出怎样的问题?

  (根据学生回答情况板书)

  3、导入新知,揭示课题。

  师:关于长和宽之间的倍数关系,除了用除法表示之外,还有一种表示方法。那就是今天这节课我们要学习的一种新的数学比较方法———“比”

  (板书课题:比的意义)

  4、引导学生理解比的前项和后项顺序不能随便调换。

  师:刚才我们用15÷10来表示长是宽的几倍,我们又可以把它们之间的关系说成长和宽的比是15比10.请同学们想一想,10÷15表示宽是长的几分之几又可以怎么说呢?

  师:15比10和10比15一样吗?能随便调换两个数字的顺序吗?(引导学生理解前后项互换后表示的意义不一样)

查看全文

《长方体和正方体的体积》教案(精选2篇)

《长方体和正方体的体积》教案 篇1

  教学内容 苏教版九年义务教育小学数学教科书六年级上册第25-26页。 教学过程 一、设疑激趣,引发问题 1.师:同学们,非常高兴今天又能和大家一起探讨有趣的数学问题。上节课,我们已经学习了体积和体积单位,谁能说说什么叫做物体的体积?谁能用手势分别比划一下1cm3、1dm2、1m3的物体大约有多大? 2.师:老师手上的这个小正方体棱长是lcm,它的体积是多少呢?3个小正方体拼成的长方体呢?6个呢?同学们,你是怎样想的?可见求一个长方体的体积,就是要看这个长方体含有多少个体积单位。这个长方体的体积是多少呢?如果求这本大词典的体积呢?如果求我们电教室这根水泥柱的体积呢?(生:疑惑)在现实生活当中,许多长方体不能切或切不开,我们该怎么办呢?(生:找出求长方体体积的一般方法)长方体可能与哪些数量有关呢?(再次让学生猜想:可能与长方体的长、宽、高有关)猜想就是我们的思维向导,长方体到底与哪些数量有关,怎样计算呢?这就是我们这节课要探讨的问题。(师揭示课题)[教学设想:通过师生共同直观演示,复习导入,拓展学生空间概念,并联系生活实际创设新旧知识之间矛盾冲突的问题情境,激发学生强烈的学习和探究欲望,培养学生的创新意识。]二、操作实验,探索新知 (一)探究长方体体积的计算。 1.同学们任意拿出一些小方块(允许学生拿出相同或不同数量的小方块),小组合作,在桌面上摆出不同的长方体,并把相关数据和你们的发现填人《实验报告单》。实验报告单长/cm宽/cm高/cm小方块的数量体积/cm2 通过以上实验,我们发现了 。 2.请2~3个小组汇报、展示小组的探究成果,启发学生发现规律。3.老师在电脑上用同样多的小方块也摆了一些不同的长方体,能让老师也展示一下吗?(师多媒体依次演示,师生共同填写实验报告单,并让学生比较四种摆法的相同点和不同点,进一步引导学生发现规律)实验报告单长/cm宽/cm高/cm小方块的数量体积/cm243112123221212121112126211212 4.比较分析:以上四种摆法,长、宽、高不同,所用小方块数量相同,即摆出的长方体体积相等。它们共同的规律是体积都正好等于长、宽、高的乘积。 5归纳概括:同学们的实验与老师的实验都发现了什么共同的规律?长方体体积=长×宽×高(v=abh) 6.练一练(学生自主完成):老师手上这个长方体教具,长7cm,宽4cm,高3cm,它的体积是多少cm3? [教学设想:学生小组合作,动手操作拼出不同的长方体,填写实验报告单,充分调动学生参与长方体体积公式推导的积极性,为学生自主探究创造了广阔的时空。同时通过学生交流,师生交流,让学生比较、分析、概括实验过程,自主地去感知、观察和发现长方体体积与长、宽、高的关系,让学生体验到“做”数学的乐趣,老师是学习的组织者和引导者。练一练让学生尝试运用长方体体积计算公式解答,培养了学生动手、动脑及实际应用的能力。] (二)探究正方体体积的计算: 1.师出示一个长方体,长4cm,宽和高都是3cm。问:这个长方体有什么特征?怎样求它的体积呢?如果老师把它的长也缩短到3cm,那么它就变成了一个什么物体?(师:正方体是长、宽、高都相等的长方体,它是一种特殊的长方体)那么正方体的体积应该怎样求呢?(引导学生推导出:正方体体积=棱长×棱长×棱长,v=a*a*a或v=a3)2.师强调:“a3”读作“a的立方”,表示3个a相乘。3.练一练(学生自主完成):一块正方体石料,棱长是6dm,这块石料的体积是多少?[教学设想:运用知识迁移,引导学生把正方体归为特殊长方体来学习,既加深了对长、正方体之间关系的理解,又加深了对正方体体积计算公式的理解。]三、灵活运用,巩固内化1.明察秋毫当判官。 (1)0.73=0.7×o.7×o.7…………( ) (2)5x3=15x…………( ) (3)一个正方体棱长4分米,它的体积是:42=16(立方分米)…………( ) (4)一个长方体,长7米,宽4米,高2分米,它的体积是56立方分米……( ) (5)一个正方体棱长6cm,它的体积和表面积相等…………( )2.讲究方法对巧快。长方体长/dm宽/dm高/dm体积/dm3622 538 正方体棱长/m体积/m30.3 20 4 3.学会知识任我行。 (1)一个长方体儿童游泳池,长30m,宽20m,水高1.2m。如果每立方米水约重1000千克,这个游泳池有水多少吨? (2)一个正方体魔方玩具的棱长总和是60cm,这个正方体魔方玩具的体积是多少? (请两位学生板演,教师集体评讲)4.轻松一刻请你猜。(游戏:让学生猜猜一个物体的表面积和体积什么变了?什么不变?如果变了是怎样变的?)①当你翻开书本自学新课的时候。 ②当你用积木搭一座2008北京奥运城的时候。 ③只要功夫深,铁棒磨成针。 ④刀切豆腐——两面光。 ⑤竹筒倒豌豆——全抖出来。 5.解决问题显身手。求下面物体的体积。 6×2×l+2×2×1=16(cm3)或2×2×2+4×2×1=16(cm3)…… [教学设想:利用新颖多样的题型,把基础认知与思维发展紧密结合起来,以达到内化新知、形成技能、发展思维的目的。] 四、总结评价,拓展升华1.引导学生回顾本课学习内容,谈谈学习本课的收获。老师认为同学们这节课学得很棒!能评价一下吗?(启发学生从学习态度、学习方法等方面自评、互评)同学们的收获真不少,只要勤动手,勤思考,一定会获取更多的数学知识,同学们也会变得越来越聪明。2.挑战自己我快乐。(拓展题)“一块不规则的铁块,如果只能借助两种工具:一个装有水的正方体容器,一把直尺。你能求出这块不规则铁块的体积吗?”这个问题留给同学们课后去实验、去思考、去解答。[教学设想:进一步沟通知识间的内在联系,并从课内延伸到课外,拓宽知识面,提高学生思维水平,着眼于学生的可持续发展。]

查看全文
目录