《比的应用》教学设计(精选17篇)
《比的应用》教学设计 篇1
教学过程:
一、复习:
1.口算:
5×7= 45÷9= 63÷7= 18÷9=
32÷4= 56÷7= 27÷9= 6×8=
72÷9= 8×3= 35÷7= 64÷8=
9×4= 24÷3= 54÷9= 21÷7=
2.把32平均分成8份,每一份是多少?
3.56里面有几个7?
二、探究新知
1.出示第59页的例题4(课件)
(1)先认真观察第一幅图的画面,用自己的话说一说画面的.内容。
(2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的“我们”是指什么人?
(3)把这两幅画面连起来编一道应用题。(小组合作)
(4)小组讨论:应该如何解决这一道题?
(5)汇报讨论结果。
重点强调:应用题解答完后,要记住写单位名称和答语。
(6)独立思考:怎样列综合算式?然后在练习本上完成。
三、练习
完成教科书第60页练习十三的第1题
(1)学生先自己看图,口头编应用题
(2)学生独立分析列式解答,教师鼓励学生列综合算式
(3)全班讲评(讲评时要学生说出每一步算式的意思)
完成教科书第60页练习十三第2题
(1)让学生自己看图,口头编应用题,
(2)说出这一道题目的已知条件和问题,
(3)独立分析列式解答
(4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?
四、全课总结:
通过这节课的学习,你想说些什么?
《比的应用》教学设计 篇2一、教学内容:
人教版五年级上册第33页的例题12。
二、教学目标:
在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。
比应用教学设计(精选9篇)
比应用教学设计 篇1
教学目标:
1、在自主探索中探究出两步除法应用题的数量关系,并能用两步除法解决相关的生活问题。
2、通过独立思考,小组合作活动,能从多个角度解决同一个问题,提高解决问题的能力,发展思维。
3、培养学生主动探索的学习热情,感受数学与生活的密切联系。教学重点:使学生理解连除应用题的数量关系,学会用两种方法解答。
教学难点:
1、用两种解答方法解答应用题。
2、理解数量关系,找出解决问题的间接信息,灵活解决问题。教具准备:口算练习卡片、投影仪等。
教学过程
一、复习。
1、口算:13×690÷380÷5÷340÷4÷548÷(2×4)
2、投影出示复习题:三年级女生要进行集体舞表演,她们平均分成2队,每队分成3组,每组10人,一共有多少人?
3、改变复习题的一个条件和问题后,出示例4三年级女生要进行集体舞表演,老师将参加表演的60人平均成2队,每队平均分成3组,每组有多少人?
4、引出课题(板书:连除应用题)
二、探究新知,形成策略
1、探究例4的解答方法
(1)读例题,学习两种分析、解答应用题的方法.
(2)思考讨论
2、结合学生讨论,教学两种解法,并列出综合算式.
3、观察比较,归纳概括.教师提问:观察两种解法在思路上有什么异同?
4、引发思考,巩固解题方法。三、巩固提升。
1、独立完成教材第53页做一做。
2、判断题。
四、全课小结。这节课我们学习的是什么知识?
教学反思:
在课堂中我注重学生解题策略的讲解,用线段帮助学生理解题意,让学生用不同的说的方式展示自己,如个别说,小组讨论说,跟着同学一起说,给了学生充足的时间与空间,让学生通过说展现思维过程,表达自己的.想法,学生每列出一个算式,就要求说出求的是什么,培养学生数学语言的完整性,并让不同层次的学生学到自己喜欢的思维方式。
《比的应用》教学设计(精选19篇)
《比的应用》教学设计 篇1
教案内容:北师大版课程标准实验教材六(上)p55—p56。
设计理念:
《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。
教学目标:
知识教学点:
1、理解按一定比来分配一个数的意义。
2、掌握按比例分配应用题的特征和方法。
能力训练点:
1、发展学生的思维能力,培养学生利用所学知识解决实际问题的能力。
2、培养学生的语言表达能力和归纳能力。
3、培养学生合作学习的能力,分析能力,概括能力。
德育渗透点:培养学生的数学兴趣,养成良好的思维品质、团结协作和开拓创新的精神。
教学重点、难点:
1、理解按一定比来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
教材分析:
这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
《比的应用》教学设计(精选16篇)
《比的应用》教学设计 篇1
【教学内容】:人教版小学数学一年级上册第47页内容。
【教学目标】:
1、认知目标:使学生认识并理解大括号和问号的意义,能借助图画正确分析题意。
2、技能目标:会用6的加法解决生活中的简单问题,初步感受数学与日常生活的密切联系,体验学数学用数学的乐趣。
3、情感目标:通过本节课教学,向学生渗透热爱大自然、保护环境等方面的教育,从而促进学生的健康发展。
【教学重、难点】:
重点:用6的加法解决生活中的实际问题。
难点:让学生学会观察、分析,能提出合适的数学问题,正确理解大括号和问号的意义。
【教学准备】:卡片智慧星贴画(板书用)
【教学过程】:
一、创设情境,生成问题。。
1、同学们,你知道现在是什么季节吗?(秋天)对,是秋天,秋姑娘呀,正忙着给勤劳的人们送去丰收和喜悦呢!美丽的秋姑娘也给咱们每个小组送来了一份礼物呢?(出示水果图形算式卡片,算式的数分别和小组数相符)大家能根据算式猜一猜,这些礼物各属于哪个小组吗?
【设计意图:激发学生兴趣,复习6的加减法运算,为后面的学习应用做铺垫】
2、师:刚才我们解决了这些问题,都用到了哪些知识呢?(生齐:6的加减法)
师:利用这些知识,还可以解决哪些问题呢?好,现在咱们还是随秋姑娘一起去大自然中转一转,看一看吧!(出示插图,导入新课)
二、探索交流,解决问题。
1、请同学们仔细观察图画,把看到的内容和同桌互相说一说。
【设计意图:培养学生初步的自主学习和小组合作的'意识。】
《比的应用》教学设计(精选16篇)
《比的应用》教学设计 篇1
(1)教学设计
一.教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学过程:
(一)复习引入
1.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系:sinA=cosB= sinB=cosA= tanA= tanB=
(2)三边之间关系 (勾股定理)
例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导"为什么两个已知元素中至少有一条边?"让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
《比的应用》教学设计(精选15篇)
《比的应用》教学设计 篇1
【教材分析】
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。