课题五:循环小数(a)
教学内容
教科书第27~28页的例7~9和“做一做”中的题目,练习七的第1~3题.
教学目的
1.使学生初步理解循环小数的概念,会用近似值表示除法中是循环小数的商.
2.使学生知道有限小数和无限小数的区别.
教学过程
一、新课
1.教学例7.
教师出示例7,让学生独立计算,提出下列问题让学生思考:
(1)这道题能不能除尽?
(2)商的小数部分和余数有什么规律和特点?
(3)这样的商如何表示?
当学生发现商的小数部分总是不断地出现3,而且总也除不尽,教师引导学生思考第2个问题,使学生发现:因为余数总是重复出现1,所以商就重复出现3,总也除不尽.教师指出:这样的除法算出的商应该表示为(板书):
10÷3=3.33……
2.教学例8.
教师出示例8,要求学生计算到商的第三位小数.
当学生算到商的第三位小数时,让学生停下来,看一看余数是多少?接着再除出两位小数,并提出下列问题供学生思考:
(1)已经算出的商的最后两位小数和余数同它前面的两位小数和余数有什么关系?
(2)如果继续除下去,商会怎样?
(3)这样的商如何表示?
让学生观察和比较计算的过程,引导学生发现余数重复出现3和8,继续除下去商就会重复出现2和7,总也除不尽.教师把商写出来:
58.6÷11=5.32727……
并说明2和7分别出现两次,如果继续除下去,会不断地重复出现,就可用省略号表示.
教师:例7和例8所得到的商是一种比较特殊的小数.(教师指着黑板上的板书)例7的商从小数部分第一位开始不断重复出现数3,写出3.33…….例8的商从小数部分的第二位开始不断地依次重复出现2和7,写成5.32727…….使大家看到,一个小数,从小数部分的某一位起,一个数字(指着例7商中的数字3)或者几个数字(指着例8商中的数字2和7)依次不断地重复出现,这样的小数叫做循环小数.
教师让学生默读教科书第118页下面循环小数的概念,并让学生思考循环小数的特点是什么?教师引导学生总结出循环小数的特点:
(1)重复出现的数字是接连依次不断的;
(2)小数的位数有无限多;
(3)用省略号来表示无限多的小数位数.
教师出示题目:1.332÷4,这道题的商是不是循环小数?为什么?(1.332÷4=0.333,这个商中虽然小数部分有重复出现的数字3,但是小数位数是有限的,所以它不是循环小数.)
教师:循环小数还有比较简便的表示法,板书:
3.33……写成3.
5.32727……写作5.3
其中是“33……”的简便表示法,是“2727……”的简便表示法.
教师:今后做小数除法时,如果遇到除不尽的情况,可以根据要求取商的近似值,也可以用循环小数表示除得的商.在一般情况下,遇到除不尽的情况通常保留一位、两位或三位小数.商是循环小数的也可以根据需要取它的近似值.例如,例8的商,可以保留两位小数,也可以保留三位小数.板书:
保留两位小数,商的近似值为5.33
保留三位小数,商的近似值为5.327
3.做第28页例9前“做一做”中的题目.
除了题目中的要求以外,还要将每个循环小数分别取保留两位和三位小数的近似值.做完后,集体订正.
4.教学例9.
教师出示例9,让学生审题后独立计算,集体订正时,让学生说一说循环小数取近似值的方法.