乘法分配律 篇1
教学目标
1.使学生理解的意义.
2.掌握的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
的意义及应用.
教学难点
的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入 :
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:).
2.教学例6:
(1)出示例6:演示课件出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便.现在你们会了吗?
三、巩固发展 演示课件出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
乘法分配律 篇2
教学内容:教科书第68页例5,第69页“做一做”中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,计算每一题时,第一个学生回答“先算什么”,第二个学生回答“再算什么”,第三个学生回答“接下来算什么”。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
“图中一共有多少个正方形?你是怎样想的?”先请一个学生回答.教师把学生所列的算式写在黑板上。
“还有别的算法吗?你是怎样想的?”再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
”(5+3)×4 5×4+3×4
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
“这两个算式的计算结果怎样?”
“这两个算式的计算结果相等,说明这两个算式有什么关系?”学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)×4=5×4+3×4
“等号左面的算式是什么意思?”(5与3的和乘以4。)
“等号右面的算式是什么意思?”(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)×6 18×6+7×6
“左面的算式是什么意思?”(18与7的和乘以6。)
“右面的算式是什么意思?”(18与7分别乘以6,再把两个积相加)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
“这两个算式相等。说明18与7的和乘以6等于什么?”说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20×(15+9) 20×15+20×9
“先来计算一下这两个算式各等于多少?”
“两个算式都等于多少?”
“这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
“仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?”多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
“再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
“等号左面与等号右面相等是什么意思?”学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用“a、b、c“表示三个数,可以写成下面的形式:
(a+b)×c=a×c+b×c
“等号左面(a+b)×c表示什么意思?”(表示两个数的和同一个数相乘)。
“等号右面“a×c+b×c表示什么意思?”(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)×27,提问:
1.“这个算式中是哪两个数的和乘以哪个数?”
“根据,这个算式等于哪两个乘积的和?”
教师在黑板上再写算式:185×27十15×27,提问:
“这个算式中是哪两个数分别乘以哪一个数?”
“根据,这个算式等于哪两个数的和乘以哪一个数?”
2.做第69页“做一做”中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
乘法分配律 篇3
教学内容:
p36/例3(乘法分配律)
教学目的:
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
教学过程:
一、铺垫孕埋伏
思考问题。
在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?
二、新授
小组讨论,尝试用不同的方法解决。
教师引导学生用多种方法解答。
学生汇报自己的解法。引导学生说明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。
小组合作:
(1)两组算式有什么相同点?
(2)两组算式有什么不同点?
(3)两组算式有什么联系?
汇报。
教师要根据学生的汇报,灵活地进行引导,总结出要点。
你还能举出像这样的几组算式吗?
学生举例。
根据学生举例板书。
到底我们举的例子是不是符合这样的规律呢?请学生验证。
请学生用语言表述出发现的规律。
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
你有什么好方法帮助我们大家记住乘法分配律?
简记为:
和与一个数相乘=积相加
三、巩固练习
p36/做一做
p38/5
在练习小结中,帮助学生记忆乘法分配律。
四、小结
学生汇报自己的收获。
教师引导小结,相应完善板书。
板书设计:
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25 (2)4×25+2×25
=6×25 =100+50
=150(人) =150(人)
(4+2)×25=4×25+2×25
┆(学生举例)
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
课后小结:
乘法分配律 篇4
教学目标
1.使学生理解的意义.
2.掌握的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
的意义及应用.
教学难点
的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入 :
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:).
2.教学例6:
(1)出示例6:演示课件出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便.现在你们会了吗?
三、巩固发展 演示课件出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
乘法分配律 篇5
教学内容:
教科书例6、例7及“做一做”,练习十四。
(一)知识教学点
1.使学生理解乘法分配律的意义。
2,掌握乘法分配律的应用。
(二)能力训练点
通过观察、分析、比较,培养学生的分析、推理和概括能力。
(三)德育渗进点
通过乘法分配律的应用,激发学生的学习兴趣。
(四)羹育渗遇点
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验
(d识迁移类推,通过合作学习,学会知识。
1.教学重点:乘法分配律的意义及应用。
2.教学难点:乘法分配律的反应用。
小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。
(一)锚垫孕伏
1.口算:(卡片)
25× 17×4 125×24
引导学生说一说运用了什么运算定律,这样计算有什么好处?
2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)
(6+4)×5 6×4+4×5
(二)探究新知
1.导人新课:
前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使
一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)
2.教学例5:
(1)出示例5: ·
(2)引导学生观察、讨论、交流。
(3)教师引导学生观察两种算式,发现了什么?使学生懂得:
①两个算式相等。
②两个算式可用等号连接。
学生答,教师板书:(18+7)×6=150
18×6+7×6二150
(]8+7)×6二18×6+7×6 .
(4)教师出示:20×(15+9)
20× 15+20×9=480
20×(15+9)二20×15+20×9
组织学生分组讨论,使学生明确:每组中算式所表示的意义。
反馈练习:按题目要求,请你说出一个等式。(投影出示)
(——+——)×——=——×——+——×——
学生答,教师填写投影。
(通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发
散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐
达到水到渠成。)
教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:
①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘
数和乘数的位置。)
②两个加数分别同一个数相乘再把两个积相加。
③等号左右两边两个算式相等。
3.概括定律:
通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生
结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。
4.反馈练习:
横线上能填几?为什么?
(32+35)×4二——×4+——×4
(62+12)×3=——×——+——×——
教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个
数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学
生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)
5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学
们观察我们练习的乘法结合律,在运算上有什么特点?
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加
数分别同这个数相乘,再把两个积相加比较简便。
6.教学例7:
(1)出示例7: ·
102×43
=(100+2)×43
=4300+86
=4386
想:把102看成(100+2),再用43分别去乘100和2,可以用口算
用了乘法结合律。
教师说明:熟练后第二步可以不写,画上虚线。
(2)出示9×37+9×63
①组织同学讨论。
②组织同学阅读教科书第65页。
③启发学生明白了什么?
(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学
生知识迁移类推,通过合作学习,能够自己学会新知。)
(三)巩固发晨
1.练习十四第1题。
2.在横线上填上适当的数。
(”(24+8)×125=一×一+一×一
(2)25×(20+4)=25×——+25×——
(3)45×9+55×9=(——+——)×——
(4)8×27+73×8=8×(——+——)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相
同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×5 24×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×8 - 10×8+125× 8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42十29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29)
(2)与6×8—6×8相等的式子是( )
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9
5.练习十四第4题,投影出示。
6,分组计算练习十四第3题。
(四)课堂小结
③28×42×29
今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分
别与一个数相乘,再把两个积相加。
练习十四第2题
乘法分配律 篇6
教学目标
1.使学生理解乘法分配律的意义.
2.把握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
乘法分配律的意义及应用.
教学难点
乘法分配律的反应用.
教具学具预备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27 73)×8 40×9 40×1 14×(10 2) 10×6 10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5 5×80 (1250 125)×8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,假如用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a b)×c=a×c b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100 2)×43,102×(40 3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37 9×63
=9×(37 63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、 、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250 125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43 25)×2=□×□ □×□
8×47 8×53=□×(□ □)
3×6 6×7=□×(□ □)
8×(7 6)=8×□ □×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×5232×(48+52)
(2)(24+8)×824×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×540×5+ 28
(5)(10×125)×810×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的相等
①28×42+28×29②(28+42)×(28+29)③28×42×29
(2)与a×8-b×8相等的式于是
①(a+b)×8②(a-b)×(8+8)③(a-b)×8
(3)与(10+8+9)×5相等的式子是
①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80 8)×2535×37 65×37
32×(200 3)38×29 38
板书设计
乘法分配律 篇7
教学目标
1.使学生理解的意义.
2.掌握的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
的意义及应用.
教学难点
的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入 :
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:).
2.教学例6:
(1)出示例6:演示课件出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便.现在你们会了吗?
三、巩固发展 演示课件出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
乘法分配律 篇8
第一课时
教学目标:
1.使学生在解决实际问题的过程中发现并理解乘法分配律。
2.使学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.渗透从特殊到一般,再有一般到特殊这种认识事物的方法,使学生增强学习的兴趣和自信。
教学重点、难点:
引导学生发现和理解乘法分配律。
教学资源:
小卡片、计算器、多媒体课件、实物投影仪。
教学过程:
一、创设情境
1.同学们,我们已经学过了哪些运算律?今天,我们继续来探究发现有关乘法的新知识。 板:乘法
2.电脑出示例题图:
二、活动尝试
1.从题中你获得了哪些信息?白菜老师要我们解决什么问题?
2.你们会列综合算式解答吗?(学生各自独立计算)
3.交流反馈:谁来说说你是怎样做的?你是怎样想的?还有不同的解法吗?
65×5+45×5 (65+45)×5
=325+225 =110×5
=550(元) =550(元)
答:一共要付550元。
三、探索规律
1.师:从这里我们又一次感受到,解决同一个问题,咱们思考的角度与方法可以是多种多样的。这两种解法算式虽然不一样,但结果---(相等)。
2.那你会把这两道算式写成一个等式吗?
板:(65+45)×5= 65×5+45×5
3.师:如果这位阿姨买了3件短袖衫和3条裤子,一共要付多少钱?怎么列式?
板:(32+45)×3 32×3+45×3
你能猜猜这两个算式的结果有没有什么关系?可以怎样检验?
板:(32+45)×3=32×3+45×3
4.出示:(13+10)×2=?
你能口算出它的得数吗?你是怎样算的?谁能大胆猜想这个算式还可以怎样计算?怎样检验?
师:通过算一算可以检验算式是否正确。
5.请你小声读读上面三个等式,有什么发现?
6.同学们,刚才你们用这里的三个等式得出了结论,你们所发现的这个结论也许只是一种偶然现象,是一种猜想而已。你们想不想自己出题来验证?
板:猜想 验证
7.学生任意地写着算式,进行着计算。
8.汇报自己验证的结果。
教师结合学生回答板书这些例子:……
9.问:这样的等式能写完吗?你能用字母来表示这个规律吗?
生异口同声:(a+b)×c=a×c+b×c
10.师:用字母表示乘法中的这个规律,感觉怎样——(稍等)简洁、明了。这就是数学的美。
11.师:任何事物都可以从正反两方面去看,请你们反着读一读字母式子。
12.师:同学们,你们发现的这个规律叫乘法分配律,用字母表示就是----(学生齐说),你们能用自己的语言描述这个规律吗?请你们同桌互相说一说。(电脑出示乘法分配律)
13.师:乘法分配律是一个很重要的知识,运用广泛,甚至到了中学也要用到,所以我们一定要学好。下面我们就来运用这个规律完成一些练习。 板:应用
四、应用规律
1.想想做做第1题。
让学生填空后结合等式两边算式的特点说说自己的思考过程。
2.根据乘法分配律判断下面各题是否正确,并说明理由。
(40+3)×25=40×25+3×25 ( )
15×9+45×9=(15+45)×9 ( )
25×21=25×20+25 ( )
40×50+50×90=40×(50+90) ( )
5×(20+6)=5×20+6 ( )
3.选择。(请用手势表示正确答案的编号。)
下面与 25×(4×8)相等的算式是( )。
①25×4+25×8; ②25×4×25×8; ③25×4×8
五、总结拓展
1.请同学们回忆一下,这节课学习了什么?我们是怎么学的?这种学习方法你们有没有学会了?课后请你们用这种方法去研究一下除法中有没有这样的规律?
板书设计:
乘法分配律
猜想---验证---归纳---应用
(65+45)×5 = 65×5+45×5
(32+45)×3 = 32×4+45×3
(13+10)×2=13×2+10×2
……
(a+b)×c = a×c+b×c
先和 先两个积
乘法分配律 篇9
教学目标
1.使学生理解的意义.
2.掌握的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
的意义及应用.
教学难点
的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入 :
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:).
2.教学例6:
(1)出示例6:演示课件出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便.现在你们会了吗?
三、巩固发展 演示课件出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
乘法分配律 篇10
我的说课流程是:说说教材分析,说学情分析,说教学模式、教学设计,说板书、课堂评价与课程资源的开发。
教材分析:
本单元包含两个信息窗,主要内容有:乘法结合律、乘法交换律和乘法分配律
这节课是学生学习了乘法结合律和乘法交换律的基础上进行的,是乘法运算规律延续。这节课以济青高速公路为背景素材,通过对行驶在高速公路上的两辆汽车的相遇信息,由解决相遇问题的两种方法,发现和引出了对乘法分配律的探索,体验生活和数学的紧密联系,将数学问题有机结合,合理整合知识,让学生利用自己已学的知识体验推动新知识的学习,培养了学生的'知识的迁移能力,提高了教学效率。
教学方法:
1、通过复习解答相遇问题,在解答实际问题的过程中体会多种解题方法。
2、引导学生借助已有经验和具体运算,用猜想、验证、比较、归纳等数学方法学习知识。
3、让学生通过探索体会知识间的联系,理解一些规律都是从一般规律概括出来的。
教学目标:
1、通过创设情境让学生在探索、验证、理解乘法分配率,让学生在解决实际问题中理解乘法运算定律在实际生活中的运用。
2、培养学生探索问题的能力。
3、使学生学会运用乘法分配率进行简便计算。
4、让学生了解简算在实际生活的运用,提高学生的简算意识。
学情分析:
这一部分内容是在学生学习了乘法结合律和交换律的基础上进行教学的,学生第一次接触,但对这方面的经验学生已有了积累。教学时,教师要充分利用学生已有的知识经验,沟通新旧知识间的内在联系。
教学模式:
七步式对话的教学模式要求学生课前进行有效地预习,搜集资料,极大的扩充了课上有限的40分钟的时间。本节课的预习要求是:熟悉课本知识,并从生活中寻找分配率实例进行验证。有效地预习不仅节约了课堂时间,也使得学生在课堂上的主体地位得以体现,在教学过程中教师起到良好的主导作用的关键是创设有效地活动体验,让学生把已有的知识有效地利用,内化为学生的数学素养,这样就会极大的提升学生学习数学的自信心及好奇心。
教学过程:
一、模拟激趣,引入学习
同学们,两个运动中的物体会出现怎样的位置关系,你知道 吗?
(学生思考回答。)下面我请两个同学到前面演示一下,看哪个 同学观察的最仔细。请学生交流汇报。
二、进行新课,迁移新知
1、观看图片,学习铺垫
这些图片是我们看到济青高速公路的场景,同学们都看 的很认真,你们了解济青高速公路的情况吗?
2、提出问题,解决问题
(1)自主提问
请同学们观察这幅图(信息窗图片),从图中你得到了哪些 信息,根据这些信息你能提出什么数学问题?学生可能会提 出:济青高速公路全长约多少千米?相遇时大客车比小客车多 行市驶了多少千米?济南到青岛的路程是多少千米
(2)合作探究
我们来解决“济青高速公路全长约多少千米?”
要解决这个问题应该先求什么,再求什么?请同学们分组交 流、解答。
(3)汇报交流
小组代表发言,汇报解答思路和方法。(根据学生的回答用 线段图帮助学生理解解题思路。)
(4)学生独立列式,并指名汇报,教师板书。
3、精讲点拨
刚才我们求济青高速公路全长约多少千米,同学们用了两种方 法,仔细观察这两个算式,你有什么发现?根据刚才的发现,你 有什么想法?鼓励学生说一说,大胆猜想。
请你在小组内举出这样的例子,验证一下我们的猜想。
学生汇报交流,教师帮助完善发现的规律。
同学们真棒!发现并验证“两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加的规律,叫做乘法的分配
律。”教师板书课题名称:乘法的分配律
我们能像前面学习的乘法交换律和乘法结合律哪样,用字母表示我们刚才发现的规律吗?
学生回答,教师板书:(a+b)?c=a?c+b?c
三、练习应用,巩固提高
1、想一想,连一连
(15+85)x7 325x(99+1)
325x99+325 34x45+34x55
34x(45+55) 15x7+85x7
23x24+23x76 23x(24+76)
2、在□里填上合适的数
(80+70)x5=80x□+70x□
mx153+mx47=□x(□+□)
(a+b)x9=ax□+□x□
mxn+mx16=□x(□+□)
3、火眼金睛辨对错
(1)13x(16+24)=13x16+13x24 ( )
(2)12x4x4x13=4x(12+13) ( )
(3)(a+b)·c=a+(b·c) ( )
(4)78x101=78x100+78 ( )
四、感悟收获 通过学习,这节课你有什么收获?请学生谈一谈。
板书设计:
乘法的分配律
(a+b)?c=a?c+b?c
110x2+90x2 (110+90)x2
=220+180 =200x2 =400(千米) =400(千米)
乘法分配律 篇11
教学内容:
教科书书第54的例题以及55页的“想想做做”。
教学目标:
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3.探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的'和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。 教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2.掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4.完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
教后反思:
乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。
在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。
当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。
乘法分配律 篇12
教学目标
知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
培养学生观察、比较、抽象、概括等能力。
培养学生的数感和符号感。
情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重难点
教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。
3、爸爸和妈妈都爱我,这句话还可以怎样说?
4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?
5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
[策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。
(二)开放探究,建构规律
1、情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2、第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?为什么?
板书:(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
3、第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4、归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5、个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(□+○)×☆=□×☆+○×☆
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。
(三)激活联系、应用规律。
1、请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2、根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。
3、联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
……
(a+b)×c = a×c+b×c
乘法分配律 篇13
教学目标:
1、发现、理解和掌握乘法分配律;
2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;
3、培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。
教学重点:乘法分配律的意义及其应用。
教学难点:应用乘法分配律进行简便计算。
教学过程:
一、创设情境,激发兴趣:
(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?
生:(齐)高兴激动。
生1::打个招呼,宋老师好。
生2:宋老师好!
师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?
生:不是,是分别握手。
生:乘法分配律(小声地)
(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)
二、自主探索,合作交流
师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。
1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?
(1)阅读理解:让学生充分表达自己知道了什么。
生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。
生2:每个小组共有6人。
(2)分析解答:
学生汇报自己的解法,引导学生说明不同算法的理由。
板书:(4+2)×25 4×25+2×25
2.两个算式的结果怎样?用什么符号连接?生读等式
板书:(4+2)×25=4×25+2×25
生读算式(4+2)×25=4×25+2×25
3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?
口头列式,得出(58+42)×9=9×58+9×42(生读等式)
4、观察这两组算式,请你写出一些类似的式子.
每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)
投影展示
生1:(1+2)×3=1×3+2×3
(3+2)×4=4×3+2×4
(10+2)×5=10×5+2×5
(6+4)×5=6×5+4×5
生2:(4×2)×3=4×3+2×3
生3:他的算式是错的,括号里应该是两数之和。
生4:( + )× = × + ×
(a+b)×c= a×c+ b×c
a×(b+c) = a×b+ a×c
师;尝试用文字总结发现的规律
生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、
等号两边的算式有什么相同和不同?
5、集体归纳。
抓住:两个数和、分别相乘
小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)
两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。
6、讨论记忆乘法分配律的方法。
师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。
生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。
生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。
、
学生的方法很多。
(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)
三、巩固新知,尝试练习
1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?
(12+200)×3=□×3+□×3
15×(40+2)=□×40+□×2
2、数学游戏:找朋友
(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)
(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)
提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?
(2)整理卡片,分成两组
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (22+18)×7 ③ 22×7+18×7
分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。
(设计意图:制造冲突,引出认知矛盾)
男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)
小结:能口算,并且能凑整十、整百数,算起来比较简便。
利用乘法分配律可以使一些计算简便。
(这一环节进行充分运用,渗透简便运算的意识)
四、运用规律,内化新知
(8+4)× 25= 34×72+34×28=
先观察,说一说算式特点,再尝试计算、 指名板演、全班交流
(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)
五、课堂总结与评价:
用自己的话说一说什么是乘法分配律?
(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)
板书设计:
乘法分配律
(4+2)×25 = 4×25+2×25
(a+b)×c= a×c+ b×c
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (88+12)×7 ③ 88×7+12×7
乘法分配律 篇14
教学内容:国标本苏教版小学数学第八册p54—55。
教学目的:
1 .使学生理解掌握乘法分配律的意义,概括出这个定律。
2.培养学生观察、抽象概括以及口头表达的能力。
3.鼓励学生大胆尝试,并渗透通过现象看本质和变中不变的思想
教学重点:理解乘法分配律的意义,并归纳出定律
教学难点:抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。
教具准备:实物投影仪、学具卡,多媒体课件。
教学过程:
一、设疑引入
1、 口算
a b
(2+8)×5 2×5+8×5
(2+10)×3 2×3+10×3
(9+11)×6 9×6+11×6
(12+18)×5 12×5+12×5
(出现第四组口算题时,后一道先不出示,让学生猜一猜可能是怎样的口算题。学生猜后再公布答案。)
教师提出疑问:你们真厉害,一下子就猜对了。这里面有什么秘密吗?
2、我们观察这两组口算题的结果怎样?可以用什么符号连接?等号左右的算式一样吗?
3、教师设疑:为什么上面算式不同而结果相等呢?结果相等的两个算式有什么联系?刚才你们有是根据什么秘密猜出了最后一道口算的?这节课我们一起研究这个问题。
二、指导探索: ×
1、(小黑板出示长方形图)书p55的第3题:
学校要在这块长方形草地周围植树,你能算出这块草地的周长吗?
(1) 学生动手,独立计算周长。
(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。
教师板书算式:(64+26)×2 64×2+26×2
(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。65×5+45×5=(65+45)×5
2、统计本班的男女生人数,写在小黑板上。
现在要求每人栽3棵树,那我们班一共能栽多少棵树?
(1)学生动手,独立计算棵树。
(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。
教师板书算式:
(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。
三 尝试讨论:
1、从上课到现在,我们一共写了6组算式,他们结果相同,可是算式不一样,我们来找找看,这些算式有什么共同的特点?
仔细观察这些算式等号的左边都是一些怎样的算式?(教师根据学生的回答即时小结“两个加数的和乘一个数”并板书)
仔细观察等号的右边,这些算式又有什么共同的特点?它和左边的算式有什么联系?(教师根据学生的回答及时小结“两个加数分别乘第三个数,再把积相加”并板书)
2、验证发现:
(1)是不是所有像这样写的两个算式就有这样的规律呢?你能照样子写出几个这样的算式并验证一下吗?
在写之前,先想一想,你写了2个算式准备如何验证?(引导学生用计算的方法验证)
(2)学生尝试写算式。验证 然后汇报交流。
(3)汇报讨论结果:
教师板书学生的算式,并问学生是如何验证的?
(4)观察这些算式,等号左边有什么共同点?右边呢?等号左右两边有什么联系?
(5)小结:等号左边的算式都是“两个加数的和与一个数相乘”的积,等号右边的算式都是这“两个加数分别与一个数相乘,再把所得的积相加。等号左边算式中的两个加数,就是等号右边算式中两个不同的乘数;等号左边算式中的一个乘数,就是等号右边算式中两个相同的乘数.
3、总结乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这就是我们今天学习的乘法分配律(板书课题)。
你能用你喜欢的方式表示这个规律吗?
学生自编公式,集体汇报介绍自己写的公式。
四、反馈调节:
1、你能用今天学的知识解释 刚才你怎么猜出第四道口算题的?
2、现在我们把书翻到p55第1题,这些等式不完整,你能把它们补充完整吗?
先请学生读题目要求
(42+35)×2=42× +35×
27×12+43×12=(27+ )×
15×26+15×14= ( )
72×(30+6)=
学生自己思考,填写,校对时请学生说一说是怎样思考的,填写的依据是什么?
2、书p55的第二题:在作业纸上呈现。
先请学生读题目要求,再独立完成,校对时说说自己是怎么判断的?
(64+36)×8 64×8+36×8
(28+32)×7 28×7+32
15×39+45×39 (15+45)×39
40×50+50×90 40×(50+90)
74×(20+1) 74×20+74
25×(17+3) 25×17+25×3
再请学生在四组得数相等的算式中各选做一题,比比谁算得快。
学生选题计算。
交流都是选得什么题目?为什么选它们?(因为计算简便)
运用乘法分配律还可以使计算简便,该怎样简算,这是我们下节课学习的内容。
3、解决实际问题:
(1)变新授时的长方形题目为求这个长方形的长比宽多多少米?
让学生独立解答。汇报交流。(得到两种解法,板书)
(2) 变植树题为求女生比男生少种多少棵树?
让学生独立解答。汇报交流。(得到两种解法,板书)
(3) 现在你对乘法分配律有什么新的认识吗?
五、总结:
今天你学会了什么?你能向大家介绍一下乘法分配律吗?
乘法分配律 篇15
教学目的:
1.引导学生能运用乘法分配律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、复习准备
出示:
1.口算:
73+27 138×100
100-64 64×1
8×9×125
(4+40)×25
2.在□里填上适当的数。
302=300+□
(300+2)×43=300×□+2×□
=+□
(+3)×14=□+□×□
二、新授
我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。
出示102×( )
学生任意填上一个两位数。
老师迅速说出它的得数,而不用笔算。
出示:
计算102×43
小组讨论完成。
学生可能出现:
(1)(100+2)×43
(2)102×(40+3)
在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。
小练:
(1)在□里填上适当的数。
3001×84=□×84+□×84
92×203=92×(200+□)
=92×200+92×□
(2)计算102×24
出示:9×37+9×63
学生在练习本上独立完成。
(1)9×37+9×63
=333+567
=900
(2)9×37+9×63
=9×(37+63)
=9×100
=900
找出不同的方法,进行板演。
引导学生对比两种方法,重点理解、说明第二种方法。
小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。
在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。
另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。
小练:(80+8)×25
32×(200+3)
35×37+65×37
38×29+38
讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?
订正时,说明怎样运用运算定律简算的。
引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。
三、巩固练习
1. 师生对出题。
我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。
2.根据乘法分配律把相等的算式用“=”连接起来。
23×12+23×88
(35+45)×12
(11×25)×4
25×(4+40)
讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?
3.p38/5
四、小结
谈收获。
五、作业:p38/6—8
板书设计:
乘法分配律的应用
计算102×43 9×37+9×63 9×37+9×63 38×29+38
102×43 =333+567 =9×(37+63) =38×(29+1)
=(100+2)×43 =900 =9×100 =38×40
=100×43+2×43 =900 =1520
=4300+86
=4386