《方程》教案

2023-10-07

《方程》教案 篇1

  一、教学目标:

  1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

  2、会用等式性质解形如x+5=12的简单方程。

  3、培养观察、分析概括的能力。

  二、课时安排:

  1课时

  三、教学重点:

  能用等式的性质解简单的方程。

  四、教学难点:

  了解等式的性质。

  五、教学过程

  (一)导入新课

  故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

  (板书:大象的体重=石头的重量)

  师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

  检查预习。

  (二)讲授新课

  探究一:学习等式性质

  1、师操作:在天平两侧各放一个5克砝码。

  提问:你能用一个等式表示天两边关系吗?

  提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都加上同一个数,等式仍然成立。

  师操作在刚才的基础上一个一个减砝码。

  提问:你能用等式来表示吗?

  提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都减去同一个数,等式仍然成立。

  3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

  (三)重点精讲。

  探究二:学习解方程

  师板书x+2=10问:用天平如何表示?

  问:如何用刚才的知识解方程?(两边都减去2)

  1、师根据学生回答板书并画出天平图。

  2、师在解题示范时要注重“解”和“等于号”的书写要求。

  3、交代检验方法。

  4、学生试着解方程。

  y-7=12 23+x=45

  组内交流收获和疑惑。

  小组汇报。

  教师总结板书:根据等式的性质解方程。

  (五)随堂检测

  1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

  2、看图列方程,并解方程。

  3、解方程。

  (1)x – 19 = 2

  (2)x - 12.3 = 3.8

  4、看图列方程,并解方程。

  5、看图列方程,并解方程。

  6、看图列方程,并解方程。

  板书设计

  X+5=7 x-5= 7

  解:X+5-5=7-5解:x-5+5=7+5

  X=2 x=12

  等式的两边同时加上或者减去同一个数,等式仍然成立。

《方程》教案 篇2

  一、教材分析

  本节是普通高中课程标准实验教科书数学必修1的第三章第一节,是在学生学习函数的基本性质和指、对、幂三种基本初等函数基础上的后续,展现函数图象和性质的应用。

  本节重点是通过“二分法”求方程的近似解,使学生体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识。

  本课是本章节的第一节课,结合函数图象和性质向学生介绍零点概念及其存在性,为后面“二分法”的学习打下伏笔,也为后来的算法学习作好基础。

  二、学情分析

  通过初中的学习,学生已经熟练掌握了一次方程、二次方程求根的方法、描点作图法和一次函数、二次函数、反比例函数的图象;通过高中前两章的学习,强化了描点作图法,初步掌握了对勾函数、指数函数、对数函数、幂函数的图象及基本性质,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。但是,学生对函数与方程之间的联系缺乏了解,因此我们有必要点明函数的核心地位。

  三、教学目标的确定

  1、知识与技能:

  (1)能够结合具体方程(如二次方程),说明方程的根、相应函数图象与x轴的交点横坐标以及相应函数零点的关系;

  (2)正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;

  (3)能利用函数图象和性质判断某些函数的零点个数;

  (4)能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器)。

  2、过程与方法:

  通过学生活动、讨论与探究,体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力。

  3、情感态度价值观:

  让学生初步体会事物间相互转化以及由特殊到一般的辨证思想,充分体验数学语言的严谨性,数学思想方法的科学性,让学生进一步受到数学思想方法的熏陶,激发学生的学习热情。

  之所以这样确定教学目标,一方面是根据教材和课程标准的要求,另方面是想在学法上给学生以指导,使学生的能力得到提高。

  四、教学重难点的确定

  重点:函数零点的概念、求法和函数零点存在性定理。

  难点:函数零点存在性定理的掌握与运用。

  依据:在高考中考察函数零点相关问题,函数零点存在性定理为“二分法”的学习奠定基础,也是能否准确掌握本节知识的关键。

  四、教学方法的选择

  由于学生有一定的基础,是在原有知识上求新,根据学生的实际情况及培养目标,我采用“以问题为中心”的探究式的教学模式,由特殊到一般,激发学生学习兴趣,体现学生的主体地位。所选教学方法主要是引导启发,学生的学习方法是通过活动、讨论、探究,发现并准确归纳出结论。

  五、学习方法的选择

  在本节教学中我着重突出了教法对学法的引导,采用自主探究的学习法。在教学双边活动的过程中,以学生活动为主,自主探究,合作交流,运用“从特殊到一般,转化,数形结合”的数学思想方法,发现并准确归纳出结论引导学生探寻新知识,层层深入掌握新知识。

  六、教学流程

  七、教学过程

  1、复习式导入

  练习:

  (1)求方程x2—2x—3=0的根,画出函数y=x2—2x—3的图象;

  (2)求方程x2—2x+1=0的根,画出函数y=x2—2x+1的图象;

  (3)求方程x2—2x+3=0的根,画出函数y=x2—2x+3的图象。观察方程的根与函数和x轴交点的横坐标之间的关系。

  意图:问题比较简单,面向了全体学生,符合学生认知规律,真正让学生思维“动”起来。让学生感知“函数的零点”概念发生的过程和求函数零点的两种方法:方程求根法与图像法。

  2、推广到一般

  从△>0,△=0,△<0三个角度对一元二次方程ax2+bx+c=0的根和相应的二次函数y=ax2+bx+c与x轴的交点情况进行比对,得到一般性的结论。

  意图:让学生感知“特殊到一般”的辩证思想;求零点过程中,了解转化(求零点转化为求方程f(x)=0的根)的数学思想,感受函数与方程的联系。

  3、定义与关系

  定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。

  关系:方程f(x)=0有实数根

  函数y=f(x)有零点。

  归纳总结:我们求函数的零点有哪些方法?

  意图:拉近师生距离,体现课堂中学生的主体地位与师生间的平等关系。融洽的师生关系能真正让学生思维活跃起来,同时继续领会转化思想。

  4、探究零点存在性

  观察二次函数f(x)=x2—2x—3和对数函数f(x)=lgx的图象中零点两侧函数值的正负情况,探究函数零点存在性。如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有

  f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。函数y=f(x)的图象与x轴有交点

  意图:通过学生自主探究和师生互动,让学生体会数形结合思想,享受探究成功的愉悦。

  5、诠释零点存在性

  只要满足上述两个条件,就能判断函数在指定区间内存在零点,若要得到零点的个数,还需结合函数的单调性等性质进行判断。我们还要注意,这只是函数零点存在性的充分条件,它的逆命题就不成立了。

  意图:使学生准确理解零点存在性定理。

  6、例题讲解与练习

  例1求函数f(x)=lnx+2x—6的零点个数。意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法。

  练习(P88)

  作业:习题3、1A组3,复习参考题A组1

《方程》教案 篇3

  教学目标:

  1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

  2、利用探索发现的等式的性质,解决简单的方程。

  3、经历了从生活情境的方程模型的'建构过程。

  4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

  难点:推导等式性质(一)。

  教学准备:

  一架天平、课件及班班通

  教学过程:

  一、创设情境,以情激趣

  师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

  学生讨论纷纷。

  师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

  二、运用教具,探究新知

  (一)等式两边都加上一个数

  1、课件出示天平

  怎样看出天平平衡?如果天平平衡,则说明什么?

  学生回答。

  2、出示摆有砝码的天平

  操作、演示、讨论、板书:

  5=5 5+2=5+2

  X=10 X+5=15

  观察等式,发现什么规律?

  3、探索规律

  初次感知:等式两边都加上同一个数,等式仍然成立。

  再次感知:举例验证。

  (二)等式两边都减去同一个数

  观察课件,你又发现了什么?

  学生汇报师板书:

  X+2=10

  X+2-2=10-2

  X =8

  (三)运用规律,解方程

  三、巩固练习

  1、完成课本68页“练一练”第2题

  先说出数量关系,再列式解答。

  2、小组合作完成69页“练一练”第3题。

  完成后汇报,集体订正。

  四、课堂小结

  这节课你学到了什么?学生交流总结。

  板书设计: 解方程(一)

  X+2=10

  解: X+2-2=10-2 ( 方程两边都减去2)

  X =8

《方程》教案 篇4

  本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。

  第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

  第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

  第12~14页全单元内容的整理与练习。

  本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

  1?从等式到方程,逐步构建新的数学知识。

  方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

  (1)

  借助天平体会等式的含义。

  等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的布置有三个特点:

  第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  (2)

  教学方程的意义,突出概念的内涵与外延。

  “含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:

  像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。

  (3)

  用方程表示直观情境里的相等关系。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

  一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

  在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。

  2?利用等式的性质解方程。

  在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:

  第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。

  (1)

  在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。

  教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。

  例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

  另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。

  例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:

  一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。

  (2)

  应用等式的性质解方程。

  例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:

  只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:

  等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:

  一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

  协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,

  引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的.内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

《方程》教案 篇5

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

《方程》教案 篇6

  教学目标:

  1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

  2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

  3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

  教学重难点:

  重点:解一元一次方程的基本步骤和方法。

  难点:含有分母的一元一次方程的解题方法。

  教学过程:

  一、新课导入:

  请同学们和老师一起解方程:

  并回答:解一元一次方程的'一般步骤和最终的目的是什么?

  二、讲授新课

  请给同学们介绍纸草书(P95)。

  问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

  数是多少?

  并引入让同学运用设未知数的方法,列出相应的方程。

  并回答:这个方程和我们以前学习的方程有什么不同?

  同学们和老师一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

  看一看你会不会错:

  (1)解方程:

  (2)解方程:

  典型例题:解方程:

  想一想:去分母时要注意什么问题?

  (1)方程两边每一项都要乘以各分母的最小公倍数

  (2)去分母后如分子中含有两项,应将该分子添上括号

  选一选:

  练一练:当m为何值时,整式和的值相等?

  议一议:如何解方程:

  注意区别:

  1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

  2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

  课堂小结:

  (1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

  有没有疑问:不是最小公倍数行不行?

  (2)去分母的依据是什么?

  等式性质2

  (3)去分母的注意点是什么?

  1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

  2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

  (4)解一元一次方程的一般步骤:

  布置作业:P98,习题3.3第3题

  补充作业:解方程:

  (1)

  (2)

  板书设计:

  教学反思

《方程》教案 篇7

  一、复习引入

  (学生活动)解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

  二、探索新知

  (学生活动)请同学们口答下面各题.

  (老师提问)(1)上面两个方程中有没有常数项?

  (2)等式左边的各项有没有共同因式?

  (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

  因此,上面两个方程都可以写成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

  因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的条件是什么?

  解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)

  练习:下面一元二次方程解法中,正确的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,两边同除以x,得x=1

  三、巩固练习

  教材第14页 练习1,2.

  四、课堂小结

  本节课要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

  (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

  五、作业布置

  教材第17页习题6,8,10,11

《方程》教案 篇8

  教学目的

  1.使学生了解二元一次方程,二元一次方程组的概念。

  2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

  3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

  重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

  难点;了解二元一次方程组的解的含义。

  导学提纲:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

  2.阅读教材问题1思考下列问题

  ⑴.能否用我们已经学过的知识来解决这个问题?

  用算术法解答

  用一元一次方程解答

  解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

  ⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

  ⑶.对于方程x十y=73x+y=17请思考下列问题

  ①它们是一元一次方程吗?

  ②这两个方程有没有共同特点/若有,有河共同特点?

  ③类比一元一次方程的概念,总结二元一次方程的概念

  3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

  注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

  4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

  注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

  (2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的.解.

  5.思考讨论在方程组①②③④

  ⑤⑥中,属于二元一次方程组的有

  达标检测:

  1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

  (1)甲数的比乙数的2倍少7:_____________________________;

  (2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

  (3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

  2.下列方程是二元一次方程的是

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程组的是

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

  y=-3

  5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

《方程》教案 篇9

  教学目标

  1.掌握解一元一次方程的一般步骤。

  2.会根据一元一次方程的特点灵活处理解方程的步骤,化为ax=b(a≠0)的形式。

  教学重、难点

  重点:掌握解一元一次方程的基本方法.

  难点:正确运用去分母、去括号、移项等方法,灵活解一元一次方程.

  教学过程

  一激情引趣,导入新课

  1解方程:4x-3(20-x)=6x-7(9-x)

  思考:解一元一次方程时,去括号要注意什么?移项要注意什么?

  2求下列各数的最少公倍数:(1)12,24,36(2)18,16,24

  二合作交流,探究新知

  1动脑筋:

  一件工作,甲单独做需要15天完成,乙单独做需要12天完成,现在甲先单独做1天,接着乙又单独做4天,剩下的工作由甲、乙两人合做,问合做多少天可以完成全部工作任务?

  (先独立做,做完后交流做法,认真听出同学意见,老师点评)

  通过这个问题,请你归纳解一元一次方程有哪些步骤?

  先去____,后去_____,再_____、_______得到标准形式ax=b(a≠0),最后两边同除以______的'系数。

  考考你:

  下面各题中的去分母对吗?如不对,请改正。

  (1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6

  (3)去分母得4(3x+1)+25x=80

  2尝试练习(注意养成口算经验的好习惯)

  解方程:

  3比一比,看谁算得准(注意养成口算经验的好习惯)

  解方程:(1),(2)

  三应用迁移,巩固提高

  1化繁为简

  例1解方程:

  2化为一元一次方程求解

  例2若关于x的一元一次方程的解是x=-1,则k的值是

  AB1CD0

  3实践应用

  例3学校准备组织教师和优秀学生去大洪山春游,其中教师22名现有甲乙两家旅行社,两家定价相同,但优惠方式不同,甲旅行社表示教师免费,学生按八折收费,乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲乙两家旅行社收费一样,请你算出有多少名学生参加春游。

  四冲刺奥赛,培养智力

  例4解方程:

  五课堂练习巩固提高解方程

  六反思小结拓展提高

  解一元一次方程的一般步骤是什么?要注意什么?

  作业:p1198,9

《方程》教案 篇10

  【教学目标】

  知识目标:

  ①使学生初步理解二元一次方程与一次函数的关系。

  ②能根据一次函数的图象求二元一次方程组的近似解。

  能力目标:

  通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。

  情感目标:

  通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。

  重点要求:

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  难点突破:

  经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。

  【教学过程】

  一、学前先思

  师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?

  生:代入消元法、加减消元法。

  师:请你猜测还有其他的解法吗?

  生:(小声议论,有人提出图象解法)

  师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?

  生:二元一次方程组怎么会有图象?它的图象应该怎样画?

  生:二元一次方程组的图象解法怎么做?

  师:同学们都问得很好!那你有喜欢的二元一次方程组吗?

  生:(比较害羞)

  师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。让我们带着同学们提出的问题从二元一次方程开始今天的学习。

  二、探究导学

  题目:

  判断上面几组解中哪些是二元一次方程的解?

  生:和不是,其余各组均是方程的解。

  师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  生:我发现二元一次方程的解就是相对应的一次函数图象上的点的坐标。

  师:很好!反过来,请问:一次函数图象上的点的坐标是否是与其相对应的二元一次方程的解呢?

  生:是的。并且二元一次方程的解中的、的值就是相对应的一次函数图象上点的横、纵坐标的值。

  三、巩固基础

  师:非常好!那下面的题目你会解吗?

  (学生读题)题目:方程有一个解是,则一次函数的图象上必有一个点的坐标为______.

  生:(2,1)

  (学生读题)题目:一次函数的图象上有一个点的坐标为(3,2),则方程必有一个解是_________.

  生:

  师:你能把下面的二元一次方程转化成相应的一次函数吗?

  (学生读题)把下列二元一次方程转化成的形式:

  (1)(2)

  生:第(1)题利用移项,得到,所以

  第(2)题利用移项,得到,两边同时除以2,所以

  四、感悟提升

  师:如果将和组成二元一次方程组,你能用代入消元法或者加减消元法求出它的解吗?

  生:能,我算出

  师:很好!你能在同一直角坐标系中画出一次函数与的图象吗?

  生:可以。(动手在学案上画图)

  师:观察两条直线的位置关系,你有什么发现?

  生:我发现这两条直线相交,并且交点坐标是(2,1)。

  师:通过以上活动,你能得到什么结论?

  生:我发现刚刚求出的二元一次方程的解刚好就是一次函数与的图象的交点坐标(2,1)。

  师:很好!你能抽象成一般的结论吗?

  生:如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。

  师:非常好!用一次函数的图象解二元一次方程组的方法就是我们今天要学习的二元一次方程组的图象解法。

  师:你能学以致用吗?

  y=2x-5

  y=-x+1

  题目:如图,方程组的解是___________.

  生:根据图象可知:一次函数与的图象的交点是(2,-1),因此,方程组的解是。

  师:回答得真棒!

  五、例题教学

  例题:利用一次函数的图象解二元一次方程组。

  师:请大家在学案的做中感悟栏内上大胆地写出解题过程。

  生:(投影展示解题过程)略。

  师:很好!让我们一起来看一下老师准备的解题过程(略)

  师:你能就此归纳出二元一次方程组的图象解法的一般步骤吗?

  生:先将二元一次方程组中的方程化成相应的一次函数,然后画出一次函数的图象,找出它们的交点坐标,就可以得出二元一次方程组的解。

  师:非常好!我们可以用12个字的口诀来记住刚才同学的步骤:变函数,画图象,找交点,写结论。

  师:接下来请同学们在学案上的巩固强化栏内利用图象解法求出你心里埋你所喜欢的二元一次方程组的解。

  生:(各自动手操作,教师展示学生求解过程)

  师:观察你作的图象,你有什么发现吗?

  生:我发现有些一次函数图象的交点比较容易看出来,而有些一次函数图象的交点不容易看出来是多少。

  师:是的,所以在这里老师需要说明的是我们用图象法求解一元二次方程组的解得到的是近似解。

  师:请大家比较一下,二元一次方程组的图象解法和我们以前学过的代数解法——代入消元法、加减消元法相比,那种方法简单一些?

  生:代入消元法、加减消元法简单。

  师:二元一次方程组的图象解法既不比代数解法简单,且得到的解又是近似的,为什么我们还要学习这种解法呢?原因有以下几个方面:一是要让我们学会从多种角度思考问题,用多种方法解决问题;二是说明了“数”与“形”存在着这样或那样的密切联系,有时我们要从“数”的角度去考虑“形”的问题,有时我们又要从“形”的角度去考虑“数”的问题,这里是从“形”的角度来考虑“数”的问题;三是为了以后进一步学习的需要。

  师:看来大家都很爱动脑筋,那么接下来我们将例题加以变化。

  六、例题变式

  题目:用图象法求解二元一次方程组时,两条直线相交于点(2,-4),求一次函数的关系式。

  师:请一位同学来分析一下。

  生:由两条直线的交点坐标(2,-4)可知,二元一次方程组的解就是,把代入到二元一次方程组中,可得:,解得,所以一次函数的关系式为。

  师:非常好!

  七、感悟归纳

  师:再请同学们思考,如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组的解是什么呢?

  生:我想如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组应该无解。

  八、拓宽提升

  题目:不画函数的图象,判断下列两条直线是否有交点?它们的位置关系如何?每组一次函数中的有什么关系?

  (1)与;

  (2)与

  师:你会怎样分析这道题?

  生:我们只要求解一下由这两个一次函数所组成的二元一次方程组的解的情况就可以判断两条直线的位置关系。如果方程组有解,那么相应的两条直线就是相交,如果方程组无解,那么相应的两条直线就是平行的位置关系。

  师:很好!抽象成一般结论怎样叙述?

  生:对于直线与,当时,两直线平行;当时,两直线相交。

  九、例题再探

  题目:利用一次函数的图象解二元一次方程组

  问:(1)这两条直线有什么特殊的位置关系?

  (2)这两个一次函数的有何特殊的关系?

  (3)由此,你能得出怎样的结论?

  师:哪位同学来尝试一下?

  生:(1)这两条直线是垂直的位置关系;

  (2)这两个一次函数的相乘的结果等于-1;

  (3)仿照刚才的结论,我得出的结论是:对于直线与,当时,两直线垂直。

  师:太棒了!那下面的这一题你会做吗?

  题目:已知直线和直线

  (1)若,求的值;

  (2)若,求垂足的坐标。

  师:谁来试一下?

  生:由前面的结论我们可以得出,如果,则,解得:;如果,则,解得,将代入二元一次方程组,可得,求出方程组的解就可以得出垂足的坐标。

  十、学会创新

  师:请你根据这节课中的例题(或习题)在学案中编(或出)一道题。看谁出的题新颖、精妙!

  生:(畅所欲言,踊跃尝试)

  十一、小结与思考

  师:(1)这节课你学到了什么?

  (2)你还存在哪些疑问?

  生:(分组讨论,代表发言总结)

  【设计说明】

  本节课的两个知识点:二元一次方程和一次函数的关系,二元一次方程组的图象解法对于学生来说都是难点。就本节课而言,前者较为重要,后者难度较大。确定本节课的重点为前者,是因为学生必须首先理解二元一次方程和一次函数在数与形两方面的联系,在此基础上才能解决好后面的难点。在重难点的处理上,为了解决学生对重点的理解,用一组二元一次方程组串起一节课,加以变式,既使得学生理解了重点内容,又为后面的难点突破留下了一定的时间和空间。本节课的教学,主要以问题为线索,注重引导学生仔细观察、独立思考、认真操作、分组讨论、合作交流、师生互动,这对本节课的重难点的突破还是有效的,同时也体现了新课改提倡的学生的“自主、合作、探究”的学习方式的培养。另外,对利用二元一次方程组的解判断直线的位置关系作为补充,渗透数形结合思想,也对教学目标中的情感态度和价值观的又一方面体现。

  【教学反思】

  这节课以“回顾、先思”为先导,以“操作、思考”为手段,以“数、形结合”为要求,以“引导探究,变式拓宽”为主线,从旧知引入,自然过渡、不落痕迹。首先提出学生所熟知的二元一次方程并讨论其解的情况,为后面探究二元一次方程与一次函数之间的关系作了必要的准备,结构安排自然、紧凑。在操作中,提出问题、深化认识。一切知识来自于实践。只有实践,才能发现问题、提出问题;只有实践,才能把握知识、深化认识。先让学生画出一次函数的图象,在画图的过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图象上。”在应用结论探索一元二次方程组的图象解法时,也是在操作中来发现问题。这样,就给了学生充分体验、自主探索知识的机会;使他们在自主探索、合作交流中找到了快乐,深化了认识。以能力培养为核心,引导探究为主线,数、形结合为要求。能力培养,特别是创新能力的培养是新课程关注的焦点。能力培养是以自主探究为平台。“自主”不是一盘散沙,“探究”不是漫无边际。要提高探究的质量和效益必须在教师的引导下进行。为达到这一目的,教案中设计了“探究导学”、“例题变式”、“例题再探”、“学会创新”和“拓展提升”。新课程理念指出:教师是课程的研究者和开发者。这就要求我们:在新课程标准的指导下,认真研究教材,体会教材的编写意图。在此基础上,设计出既体现课程精神,又适合本班学生实际的教学案例。本节课前半部分时间有些慢,后半部分例题再探和学会创新时间不够。建议有针对性的学生板演多一点,进一步加强双基的落实。

  【同伴点评】

  本节课教师创设问题情境,引导学生观察、思考、操作、探究、合作交流。问题的设计层层递进,通过问题的逐一解决,师生最终形成共识,达到了揭示二元一次方程组与一次函数的图象关系的目的。(李晓红)

  在例题教学及学生动手尝试时,教师在学生大胆尝试之后给出解题过程,强调了解题的规范性,有利于培养学生的严谨认真的学习态度。同时强调了由于二元一次方程组的图象解法得到的解往往是近似的,因此必须检验。教师对学习二元一次方程组的图象解法的必要性的解释,是非常有必要的,这一解释解决了学生的疑惑,同时也渗透了数形结合思想,也是教学目标中的情感态度和价值观的体现。对于这一解释,相当一部分教师在这一节课中并没有很好解决。这一处理方法值得他人借鉴。(丁叶谦)

  本节课老师准备充分,教学环节紧紧相扣。授课老师充分体现了课题:“先思后导,变式拓宽教学设计”的精神,不断地创设问题情境,引导学生学习新知,在探索二元一次方程组的图象解法时给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。同时对例题连续的再利用,不断变化,让学生在变式中不断丰富对二元一次方程组图象解法的认识,充分认识二元一次方程组图象解法的实用性,学会创新环节的设计更是极大地调动学生学习的积极性。教师教态亲切,语言生动,娓娓道来。

《方程》教案 篇11

  一 内容和内容解析

  1.内容

  二元一次方程, 二元一次方程组概念

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

  本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.

  本节课的教学重点是:二元一次方程, 二元一次方程组的概念

  二、目标和目标解析

  1.教学目标

  (1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.

  (2)理解解二元一次方程, 二元一次方程组的解的概念.

  2. 教学目标解析

  (1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

  (2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.

  三、教学问题诊断分断

  1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

  2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.

  本节教学难点:

  1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.

  2.二元一次方程组的解的意义

  四、教学过程设计

  1.创设情境,提出问题

  问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

  师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.

  教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的方程叫做二元一次方程。

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

  问题2:对比两个方程,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场

  数,它们必须同时满足这两个方程,这样,连在一起写成

  就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。

  设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

  问题3 : 探究

  满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中

  x

  (3) 当 =12时,x的值

  师生活动:小组讨论,然后每组各派一名代表上黑板完成.

  设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

  3加深认识,巩固提高

  练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。

  师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

  设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,

  4归纳总结

  师生活动:共同回顾本节课的学习过程,并回答以下问题

  1.二元一次方程, 二元一次方程组的概念

  2.二元一次方程, 二元一次方程组的解的概念.

  3.在探究的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第90页第3,4题

  五、目标检测设计

  1.填表,使上下每对x,的值是方程3x+=5的解

  x

  2.选择题

  二元一次方程组的解为( )

  A. B. C. D.

  设计意图:考查学生二元一次方程组的解的掌握情况.

《方程》教案 篇12

  教学目标:

  1.知识目标

  (1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

  (2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

  2.能力目标

  (1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

  (2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

  3.情感目标:

  (1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

  (2)培养学生严谨的思维品质;

  (3)通过学生间的`互相交流、沟通,培养他们的协作意识。

  教学重点:

  1.弄清列方程解应用题的思想方法;

  2.用去括号解一元一次方程。

  教学难点:

  1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

  2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

  教学过程:

  一、 创设情境,提出问题

  问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

  学生思考,根据自己对一元一次方程的理解程度自由编题。

  问题2:解方程5(x-2)=8

  解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

  (教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

  二、 探索新知

  1. 情境解决

  问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

  问题2:教师引导学生寻找相等关系,列出方程。

  根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

  问题3:怎样使这个方程向x=a的形式转化呢?

  6x+6(x-20xx)=150000

  去括号

  6x+6x-12000=150000

  移项

  6x+6x=150000+12000

  合并同类项

  12x=162000

  系数化为1

  x=13500

  问题4:本题还有其他列方程的方法吗?

  用其他方法列出的方程应怎样解?

  设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)

  归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

  去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

  2. 解一元一次方程去括号

  例题:解方程3x-7(x-1)=3-2(x+3)

  解:去括号,得3x-7x+7=3-2x-6

  移项,得 3x-7x+2x=3-6-7

  合并同类项,得 -2x=-10

  系数化为1,得x=5

  三、 课堂练习

  1.课本97页练习

  2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  四、总结反思

  1.本节课你学习了什么?

  2.通过今天的学习,你想进一步探究的问题是什么?

  ( 由学生自主归纳,最后老师总结)

  四、 作业布置

  1. 课本102页习题3.3第1、4题

  2. 配套资料相关练习

  教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

《方程》教案 篇13

  一元二次方程的概念

  教材分析:

  1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。

  2.这些概念是全章后继内容的基础。

  3.让学生体会数学来源于生活,又服务于生活的基本思想。

  学情分析:

  1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。

  2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。

  3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。

  教学目标:

  一、知识与技能:

  1.理解一元二次方程的概念,能判断一个方程是一元二次方程。

  2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.

  二、过程与方法:

  1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念。

  2.培养独立思考,合作交流学,分析问题,解决问题的能力。

  三、情感态度与价值观:

  1.培养学生主动探究知识、自主学习和合作交流的意识.

  2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.

  3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。

  教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。

  教学难点:

  1.由实际问题向数学问题的转化过程.

  2.正确识别一般式中的“项”及“系数”.

  3.一元二次方程的特点,如何判断一个方程是一元二次方程。

  教学过程:

  一、创设情境,引入新课

  1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划无公害蔬菜的产量比翻一番,要实现这一目标,和20无公害蔬菜产量的`年平均增长率是多少?(通过放幻灯片引入)

  设无公害蔬菜产量的年平均增长率为x,20的产量为a(a≠0),翻一番的意思就是a变为2a,那么

  (1)用代数式表示20的产量;

  (2)年蔬菜的产量比年增加了2x,对吗?为什么?你能用代数式表示出来吗?

  学生思考交流得出方程a(1+x)2=2a

  整理得,x2+2x-1=0…………①

  2.通过幻灯片引入情境,提出问题:

  问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?

  设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?

  这个问题的相等关系是什么?

  320×200-(320x+2×200x-2x2)=57000

  整理得x2-36x+35=0

  谁还能换一种思路考虑这个问题?

  把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?

  (320-2x)(200-x)=57000

  整理得x2-36x+35=0…………②

  比较一下,哪种方法更巧妙?

  3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?

  设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5x)件。可列方程为:(50-x)(100+5x)=6000

《方程》教案 篇14

  教学目标

  1。知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

  2。过程与方法

  经历探索一次函数的应用问题,发展抽象思维。

  3。情感、态度与价值观

  培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

  重、难点与关键

  1。重点:一次函数的应用。

  2。难点:一次函数的应用。

  3。关键:从数形结合分析思路入手,提升应用思维。

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

  教学过程

  一、范例点击,应用所学

  例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的'跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

  y=

  例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

  拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习。

  三、课堂总结,发展潜能

  由学生自我评价本节课的表现。

  四、布置作业,专题突破

  课本P120习题14。2第9,10,11题。

《方程》教案 篇15

  一、活动内容:

  课本第110页111页活动1和活动3

  二、活动目标:

  1、知识与技能:

  运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

  2、过程与方法:

  (1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

  (2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

  3、情感态度与价值观:

  通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

  三、重难点与关键

  1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

  2、难点:以上重点也是难点

  3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。

  四、教具准备:

  投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

  五、教学过程:

  (一)活动1

  一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

  这个人买了n件商品需要多少元?

  教师活动:

  (1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

  (2)教师对学生在发表解法时存在的问题加以指正。

  学生活动:

  (1)分组后对活动一的问题展开讨论,探究解决问题的方法。

  (2)学生派代表上黑板板演,并发表解法。

  解:2.2nn100

  2.2100+2(n-100)n100

  问题转换:

  一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

  (1)这个人买这种商品多少件?

  (2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

  教师活动:同上学生活动:同上

  解:(1)n220

  100+n220

  (2)=0.48nn=0

  100+=0.48nn=500

  (二)活动2:

  本活动课前布置学生做好活动前的准备工作:

  1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

  2、分组:(4人一组)

  开始做下面的实验:

  (1)把直尺的中点放在支点上,使直尺左右平衡。

  (2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

  (3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)

  (4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

  (5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

  以上实验过程可以由学生填写在预先设计的记录表上

  实验次数棋子数ab值a与b的关系

  右左ab

  第1次11

  第2次12

  第3次13

  第4次14

  第n次1n

  根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差。

  根据实验得出a、b之间关系,猜想当第n次实验的a和b的关系如何?a=nb(学生实验得出学生代表发言)

  如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)

  此问题由学生合作解决并派代表板演并讲解,教师加以指正。

  解:设支点离n枚棋子的距离为x得:

  x+nx=Lx=答:略

  (三)小结,由学生谈本节课的收获。

  (四)作业

  1、课后了解实际生活中的类似活动问题,并举出几个例子。

  2、课本,第110页活动2。

《方程》教案 篇16

  第一单元方程

  第一课时   方程的意义

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,知道像x+50=150、2x=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学过程:

  一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  x+50>100            x+50=100

  x+50<100            x+x=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,

  要说出理由。

  学生可能会这样分:

  第一种:

  x+50>100            x+50=100

  x+50<100            x+x=100

  第二种:

  x+50>100            x+x=100

  x+50<100           

  x+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像x+50=150、2x=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那x+50>100 、x+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:

  x+50=100

  x+x=100

  像x+50=150、2x=200这样含有未知数的等式是方程。

  第二课时     等式的性质(一)

  教学内容:教科书第3~4页的内容,练习一的4~6题。

  教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20             20+10=20+10

  x=50              x+20=50+20

  50+a=50+a       50+a-a=50+a-a

  x+20=70          x+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然

  是等式。这是等式的性质。

  独立完成“练一练”第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,

  学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。

  二是检验:把计算的结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成“试一试”“练一练”的第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分

  析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  x+10=50

  解: x+10-10=50-10

  x=40

  第三课时     练习

  教学内容:教科书第6页的7~12题。

  教学要求:1、通过练习,使学生进一步体会方程的含义。

  2、进一步理解等式的性质,能根据等式的性质正确地解方程。

  教学过程:

  一、基础练习

  1、说出下面的式子哪些是方程,哪些不是,为什么?

  20+17=37        12-y=4         a+12=35

  21-b<14        x=14+23        16+a=27+b

  2、解方程

  x+125=370       520+x=710         x-4.9=6.4

  120-x=25        7.8+x=2.5         x+8.5=12

  学生独立完成,指名学生板演。

  选3题让学生说说想的过程。

  集体订正,帮有错的同学分析错误原因,使其明白。

  二、完成第6页的7~12题。

  第7题

  学生独立完成后指名回答,让学生说说是怎样想的。

  使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道

  最后的结果。

  第9题

  先由学生独立完成。

  指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

  们在做题时要注意一些什么?

  第8题

  学生独立完成,指名板演。

  教师要特别关注前面解题还有错的学生,争取人人过关。

  集体订正,分析错误原因。

  第12题

  学生读题后独立思考解决问题的方法。

  小组内交流。

  全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

  三、课堂作业

  第6页的第10、11题。

  第四课时

  教学内容:教材第7~10页,例5、例6及相应的试一试,练一练,练习二第1~3题

  教学目标:

  1、使学生进一步理解并掌握等式的性质,即在等式两边都乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式的性质。

  2、使学生掌握利用相应的性质解一步计算的方程。

  教学重点:使学生理解并掌握在等式两边都乘或除以同一个数(除以一个数时0除外)这一等式的性质。

  教学过程:

  一、复习等式的性质

  1、前一节课我们学习了等式的性质,谁还记得?

  2、在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

  3、生自由猜想,指名说说自己的理由。

  4、那么,下面我们就通过学习来验证一下我们的猜想。

  二、教学例五

  1、引导学生仔细观察例五图,并看图填空。

  2、集体核对

  3、通过这些图和算式,你有什么发现?

  4、接下来,请大家要课练本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

  5、通过刚才的活动,你又有什么发现?

  6、引导学生初步总结等式的性质(关于乘除的)

  7、板书出示:等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

  8、练一练第一题

  ⑴、指名读题

  ⑵、生独立填写在书上,集体核对

  ⑶、你是根据什么来填写的?

  三、教学例六

  1、出示例六教学挂图,指名读题,同时要求学生仔细观察例六图

  2、长方形的面积怎样计算?

  3、根据题意怎样列出方程?指名口答,你是怎么想的?板书:40x=960

  4、在计算时,方程两边都要除以几?为什么?

  5、生独立计算,指名上黑板。全班核对

  6、计算出x=24后,我们怎样才能确定这个数是否正确?请大家口算检验一下。最后将例六填写完整。

  7、小结:在刚才计算例六的过程中,我们将方程的两边都同时除以40,这是为什么?为什么将等式两边都同时除以40,等式仍成立?

  8、试一试

  ⑴、出示x÷0.2=0.8

  ⑵、生独立解方程,指名上黑板。师巡视并帮助有困难的学生。

  ⑶、集体核对,指名口答:你是怎样解方程的?为什么可以这样做?

  9、练一练第二题

  ⑴、生独立解方程。指名上黑板,师巡视。

  ⑵、集体订正。

  四、巩固练习

  1、练习二第一题

  ⑴、请每位同学在小组里说一说每一题应该怎样解,指名口答。(第三组)

  ⑵、生独立解方程。指名上黑板

  ⑶、集体核对

  2、练习二第二题

  ⑴、指名读题

  ⑵、生独立填写,师巡视。

  ⑶、你在填的时候是怎样想的?

  五、课堂作业

  练习二第三题

  教后小记

  ________________________________________________________________________________________________________________________________

  第五课时

  教学内容:教材第8~11页,例7及相应的试一试,练一练,练习二第4~7题

  教学目标:使学生掌握列方程解决简单的实际问题。

  教学过程:

  一、教学例7

  1、出示教学挂图,指导学生仔细观察题目,明确题意。

  2、题目中已知什么,要求什么?这些量之间有什么关系?板书:小军的成绩-小刚的成绩=0.06米

  3、小军的成绩我们知道吗?不知道可以用什么来表示?

  4、接下来,请你用列方程的方法来解决这道问题。(生独立解决,师巡视)指名上黑板。

  5、集体核对,(指算式)这道算式表示什么意思?

  6、计算完结果后,你是怎样检验的?

  7、这道题目还可以怎样列式?(生小组内交流不同的算法,并说一说是根据什么数量关系计算的)

  8、小结:刚才我们用列方程的方法来解决了问题,谁来说一说,用列方程解答时,我们是怎样列出方程的,解答过程中要注意些什么?

  9、试一试

  ⑴、指名读题

  ⑵、题目的各个数量之间有什么关系?指名口答后生集体填写在书上。如有不同的可以书上补充。

  ⑶、请同学们用列方程的方法来解决这个问题。(生独立解决,师巡视)

  ⑷、集体核对。

  10、练一练

  ⑴、引导学生明确条件和问题。

  ⑵、引导学生明确题目中已知量与未知量的相等关系,并将这个关系写在书上。

  ⑶、根据数量关系列出方程并解答。(生独立解决,师巡视,帮忙有困难的学生)

  ⑷、集体核对。

  二、巩固练习

  1、练习二第4题

  ⑴、生独立读题,明确题意。

  ⑵、引导学生看图列出方程并解答。

  ⑶、集体核对。请你说一说你是怎样列出方程的。

  ⑷、做完后你是怎样检验的?

  2、练习二第5题

  ⑴、指名读题,明确题意。

  ⑵、小组讨论每题的数量关系,全班交流。生独立解答

  ⑶、集体核对

  3、练习二第6题

  ⑴、生独立完成,师巡视

  ⑵、小组内核对,同时交流讨论数量关系。

  ⑶、全班交流。

  三、课堂作业

  练习二第7题

  第六课时

  教学内容:教材第11页练习二8~12题

  教学目标:使学生熟练掌握等式的性质并用列方程的方法解决简单的实际问题。

  教学过程:

  一、复习等式的性质

  1、前几节课,我们学习了等式的性质,谁来说一说,等式有怎样的性质?指名口答。

  2、今天这节课,我们就进行一些相应的练习巩固知识。

  二、练习二第8题

  1、指名读题

  2、生独立填写在书上,集体订正。

  3、说一说,你是怎么填的。(小组内交流)

  4、我们在解答方程时,要养成检验的习惯,也就是将算出的未知数的值再代入方程,看等式是否成立。

  三、练习二第9题

  1、指名读题

  2、这道题目,已知哪些量,要求什么量?

  3、已知量与未知量之间有什么样的相等关系?(多请几位同学说一说)

  4、生独立做在课练本上。师巡视(注意辅导有困难的学生)

  5、集体核对。

  四、练习二第10、11题

  1、学生在小组内讨论这两道题目的数量。

  2、生独立解决,师注意巡视,发现问题,个别辅导。同时注意观察学生的不同做法,并通过板演在全班讨论。

  3、集体核对

  五、课堂作业

  练习二第12题

  第7课时  整理与练习(1)

  教学内容:教科书第12页~13页“回顾与整理”“练习与应用”的1~4题。

  教学目标:1、通过整理,让学生把本单元的知识进行系统的梳理,形成知识的体系,进一步理解本单元的重点和难点。

  2、通过练习,提高学生解方程的正确率和速度。

  3、提高学生小组合作学习的能力。

  教学过程:

  一、回顾与反思

  提问:这一单元我们学习了哪些内容?

  引导学生说出:方程、等式的性质、解方程。

  方程:含有未知数的等式叫作方程。

  等式的性质:等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  等式两边同时乘或除以同一个不等于0的数,所得的结果仍然是等式。

  解方程:求方程未知数值的过程,叫做解方程。

  学生独立思考问题:

  1、举例说一说等式和方程有什么联系和区别。

  2、等式有哪些性质?你是怎样解方程的?

  3、在列方程解决实际问题时你是怎样想的?

  小组内逐一交流这3个问题,有组长组织。

  全班交流。

  二、练习与应用

  第2题

  学生独立完成。

  选3题让学生说出想的过程。

  帮有错的学生订正。

  第3题

  学生独立完成。

  小组交流这4题的方程和解题过程,没有意见的就通过。

  全班交流:

  (1)交流有困惑的地方。

  (2)交流有不同意见的题目。

  4x=10

  1.6x=5.6

  x+7=17

  x+110=250

  三、课堂作业

  练习与应用的第1、4题。

  第8课时    整理与练习(2)

  教学内容:练习与应用的第5~7题,“探索与实践”的题目。

  教学目标:1、通过练习,提高学生列方程解决问题的意识和能力。

  2、让学生通过实践,在解决问题的过程中培养学生发现问题、解决问题

  的能力。

  教学过程:

  一、探索与实践

  出示第8题题目。

  指导学生理解题目:“连续的3个自然数”是什么意思?举个例子说说。

  学生独立思考这3个问题,在本子上适当记录。

  小组内交流,把困惑、疑点、不同意见的地方记录下来。

  (1)a+b+c的和等于3b。

  (2)3x=99     x=33

  (3)5n=55     n=11

  很多学生在做这道题时会感到比较困难,要让有能力的学生多发表自己的见解,教师还要结合实际情况多举例来说明它们之间的关系。

  补充:依此类推,9个连续自然数的和是99,你能用方程算出中间的一个数是多少吗?

  解:设中间一个数n。

  9n=99

  n=99÷9

  n=11

  第9题

  学生读懂题目意思独立思考,解决问题。

  和同座位同学交流自己的思考过程。

  全班交流:(1)从第一个天平可看出,一个梨子的质量相当于3个苹果的质量。

  (2)从第二个天平可看出,三个苹果的质量相当于6个桃的质量。

  (3)因此,一个李子的重量相当于6个桃子的质量。

  二、评价与反思

  组织学生先进行自我评价,小组交流后全班交流。

  三、课堂作业

  练习与应用的第5~7题。