《圆锥的体积》导学案

2023-07-22

《圆锥的体积》导学案 篇1

  课 题

  圆锥的体积 课 型

  学案导学课

  年 级

  六年级

  教 师

  学

  习

  内

  容

  教师提供 小学数学六年级下册14页----17页

  学生提供 等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。 学

  习

  目

  标

  1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。      2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。 重

  点

  难

  点

  重点:圆锥的体积计算。 难点圆锥的体积公式推导。 关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。 学

  习

  过

  程

  学   案

  导 案

  独

  立

  尝

  试

  准备:等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。 看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现? 长方形的长等于三角形的底,长方形的宽等于三角形的高。 你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢? 三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。 布置课前预习

  工学

  习

  过

  程

  学   案

  导 案

  点

  拨

  自

  学

  1、圆柱和圆锥有哪些相同的地方? 2、圆柱和圆锥有哪些不同的地方? 3、圆锥的体积和圆柱的体积有什么关系呢? 请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。 交

  流

  解

  惑

  它们的底面积相等,高也相等 圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小…… 动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。 通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流 组际解疑 老师点拨 合

  作

  考

  试

  1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算) 2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底 面半径约3分米,高约2.7分米,求沙堆的体积。 (只列式不计算) 3、在打谷场上,有一个近似于圆锥的小麦堆,测 底面直径是4米,高是1.2米。每立方米小麦约 重735千克,这堆小麦大约有多少千克? (只列式不计算) 4、如图,求这枝大笔的体积。 (单位:厘米) (只列式不计算) 5、将一个底面半径是2分米,高是4分米的圆柱 形木块,削成一个最大的圆锥,那么削去的体积 是多少立方分米?(口算) 1、先独立答题 2、组内交流 3、师生交流 自

  我

  总

  结

  通过今天的学习,我学会了       ,以后我会            在                     方面更加努力的。                      

  教学反思

  本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

《圆锥的体积》导学案 篇2

  课 题   圆锥的体积   导学目标   1、通过动手操作,理解圆锥体积计算公式的推导过程。   2、掌握圆锥体积的计算方法,并能解决相关的实际问题。   学习重点   掌握求圆锥体积的计算方法。   学习难点   理解圆锥体积计算公式的推导过程。   课 型   新 授 课   课 时   2 课 时   主 备 人   周 伟   审 核 人    薛玉红 杨海波   教        学        过        程   教学环节   教学任务   教师活动   学 生 活 动   预 见 性 问 题 及 解 决 对 策   复    习   (5分钟)   回忆求圆柱体积的计算方法   根据给出半径、直径、底面积等条件,求圆柱体积,强调圆柱体积公式。   根据给出的条件求圆柱的体积,只列式不计算。   圆柱体积计算公式是圆锥体积计算公式的基础,通过充分的复习,记牢圆柱的体积计算公式,可以很自然地完成新授知识的迁移。           预       习   (28分钟)       交流   (5分钟)       分配展示题(2分钟)   1、明确学习目标   2、阅读教科书中新授内容   3、完成学案内容   4、动手操作找到圆柱体积与圆锥体积间的规律   5、讨论学案中的问题   6、提出质疑   1、下发学案   2、指出目标中的重点部分   3、巡视,及时引导、点拨,帮助学生解决问题   4、分配展示题   1、阅读学习目标   2、阅读教科书中的新授内容   3、动手操作,在试验中发现圆柱体积和圆锥体积间的关系。   4、互助小对子讨论学案中的问题,集体订正展示题的注意问题、答案。   1、复习题要给出不同的条件,列式求圆柱的体积,复习的全面,有利于新知识的讲授。   2、先强调做实验用的圆柱和圆锥之间的关系是等底等高的,再进行实验。   3、把圆柱和圆锥的沙子互相倒,进行操作,这样可以加深印象。提醒学生可以忽略一些操作中出现的误差。   4、围绕公式要采用回忆推导过程、读、背、互考等方式加深记忆。   5、解决问题的时候必须要注意单位换算和不要忘写了公式中的1/3。   第二课时   准备   (5分钟)       展   示   (20分钟)       1、准备展示内容   2、各小组选派代表展示自己分配到的题和提醒值得注意的地方。       1、参与学生研讨,及时引导强调每道题的重点知识。   2、及时对展示同学做出评价。   1、小组长组织成员再次订正答案,分配成员的展示任务。   2、分组展示本组准备的成果。   3、认真倾听其他小组同学的展示。   1、展示时有吐字不清,语句重复等现象要及时纠正。   2、给出半径、直径、底面积等条件,在求圆锥体积的时候,要紧紧围绕公式进行解题,突出本节课的重点。   反   馈   验   收   (13分钟)   归纳   (2分钟)   1、完成达标测评   2、归纳新授知识   1、巡视学生完成达标测评的过程。   2、帮助学生梳理知识,再次归纳学习的重点知识。   1、完成达标测评。   2、认真归纳新学的知识点。   1、围绕求圆锥体积公式归纳新学知识,特别是公式中的1/3。   2、可以附带回忆求圆柱体积公式,并对圆柱、圆锥体积公式进行区别强调。   教学反思      

《圆锥的体积》导学案 篇3

  东仁堡小学“2+2”高效课堂数学导学案(b版)   年级:六年级   编号: 04        课题:《圆锥的体积》    课时:第一课时        【预习导学】      (时段: 家庭学习   时间:20分钟    ) 1、复习圆锥的特点及圆锥的高。 2、复习圆柱的体积计算公式做习题练习册第10 页3题 3、自学课本第10页内容。 【课堂导学】 一、学习目标: 1、通过探索与发现,推导出圆锥体积的计算方法,并能解决简单的实际问题。 2、经历探索圆锥有关知识的过程,进一步发展空间观念。 3、在观察与实验、猜测与验证、交流与反思等活动中,体会数学知识的产生过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。 二、导学过程: 策略 流程

  自学研读

  内容 学法 时间

  合作交流

  内容 学法 时间

  展示反馈

  内容 方式 时间

  点拨整理

  知识生成 规律总结 复习旧知,做好铺垫 (预设时间:9分钟) 拿出预习本,再自查做题情况,看有没有补充的。 小组交换检查预习的作业。 小组代表发言交流。 全班小结:圆锥是有一个曲面和一个圆形组成;圆锥的高是圆锥的顶点到地面的距离。圆柱的体积=底面积x高 创设情境,引发猜想 (预设时间:10分钟) 长方体正方体和圆柱体的体积都可以用底面积乘以高计算出来,圆锥的体积能不能也用这个方法? 同桌交换交流自己的想法,心得。 小组代表1:圆锥的体积可以用底面积乘以高。 小组代表2:不同意第一组结论,因为底面积乘以高算出来的是圆柱的体积。小组代表3:用等地等高的圆柱型容器和圆锥型容器做盛装实验就可得出圆锥体计算公式     小结:圆锥体体积等于与它等地等高的圆柱体体积的三分之一。用字母表示是v= 1/3sh。 引用新知,巩固所学 (预设时间:14分钟) 布置习题:做练习册第11页1题2题 学生自己独立完成作业。 全班集体订正。 小结:同学们都能熟练运用圆锥体体积计算公式在以后计算中要注意不要忘记乘以三分之一。 巩固练习,拓展深化 (预设时间:7分钟) 布置习题: 做习题教材第12页“试一试” 学生自己独立尝试完成习题。 指名班演,集体订正。 引导小结:计算时除不要漏掉乘1/3外,还要注意,能约分的要先约分。 三、板书设计  圆锥的体                      圆柱的体积=底面积×高              圆锥的体积=1/3×圆柱的体积=1/3×底面积×高          字母公式:v=1/3sh 【达标训练】 1        .填空  (1)、一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,      圆柱的体积是(       )。 (2)、一个圆锥与一个圆柱等底等高,已知圆柱的体积是 12 立方厘米, 圆锥的体积是(    )。 (3)、一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是(        )。 2、一堆圆锥形沙堆,底面周长是62.8米,高石6米,这堆沙子有多少立方米? 3、一堆圆锥形沙堆,它的占地面积为12平方米,高是1.5米,每立方米沙重 1.7   吨。用载重为2吨的汽车把这堆沙运走,几次才能运完? 【课后反思】

《圆锥的体积》导学案 篇4

  【使用说明及学法指导】

  1、结合问题导学自学书中 25-26 页,用红笔勾画出疑惑点;独立思考完成合作探究。

  2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

  【学习目标】

  1、探索并掌握圆锥的体积计算公式。

  2、能利用公式计算圆锥的体积,解决简单的实际问题。

  3、培养乐于学习,勇于探索的情趣。

  【重点、难点】

  重点:掌握圆锥的体积计算公式。

  难点:理解圆锥体积公式的推导过程。

  【预习导学】

  (一)轻松热身。

  1、写出相关的公式: 圆的体积:s= 圆柱的体积公式:v=

  2、一个圆柱形的底面直径是 10 米,高 3.9 米,它的体积是多少? (二)自主学习。

  1、圆锥体积公式的推导。

  (1)借助教具完成书上 25-26 页的实验,探索圆锥和圆柱体积之间的关系。

  (2)通过实验,因为:圆柱的体积=( )( ),所以圆锥的体积=(  )

  2、圆锥体积公式的应用。

  看书完成例 3

  工地上有一些沙子,堆起来近似一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。)

  (1)沙堆底面积:

  (2)沙堆的体积:

  【合作交流】

  1、讨论自主学习中存在的问题。

  2、思考讨论:为什么等底等高的圆锥的体积只有圆柱的体积的 积多( )倍,圆锥的体积比圆柱的体积少( ) 。

  3、一个圆锥形小麦堆,底面周长是 25.12m,高 3m.如果每立方米小麦重 750 千克,这堆小麦重多少千 克?

  【课堂总结】本堂课你学懂了什么?还有什么疑问?

  【当堂检测】

  1、一个圆锥的高是 10cm,底面半径是 3cm,它的体积是多少?

  2、把一个底面直径为 20cm 的圆柱形木块切削成一个与它等底等高的圆锥。这个圆锥的体积是多少?

  3、一个正方体的体积是 225 立方厘米,一个圆锥的底面半径和高都等于该正方体的棱长。求这个圆 锥的体积。

《圆锥的体积》导学案 篇5

  学习目标:

  1、体会圆锥体积公式的推导。

  2、初步掌握圆锥体积的计算公式

  3、能运用公式正确地进行计算。

  学习重点:圆锥体积的计算

  教学难点:圆锥体积公式的推导过程

  学习过程:

  复习

  1、计算下列圆柱的体积。(只列式不计算)

  ①底面积是5平方厘米,高 6 厘米,体积 =  ?

  ②底面半径是 2 分米, 高10分米,体积 =  ?

  ③底面直径是 6 分米, 高10分米,体积 =  ?

  2、圆柱体积公式是怎样推导出来的?

  3、你会计算哪些图形的体积?通用的体积公式是什么?

  4、圆锥有哪些特征?

  5、小红有两支铅笔,小明的铅笔是小红的3倍,这句话还可以怎样说?

  二、自主学习、合作交流

  1、观察、猜想:

  把圆柱形铅笔用转笔刀削一下,削后的铅笔形成了(  )

  猜想:圆锥的体积和圆柱的体积有没有关系?

  2、验证猜想:

  拿出你准备好的等底等高的圆柱、圆锥形容器,用倒水或倒沙的方法试试,你有什么发现

  我发现:————————————————

  用字母表示为:——————————————————

  思考:要求圆锥的体积,必须知道哪两个条件?为什么要乘1/3  ?

  3、练一练

  (1)求下列各圆锥的体积

  ①一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  ②已知一圆锥底面半径是3厘米,高是12厘米,它的体积是多少?

  ③工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子的底面直径是4米,高1.2米,这堆沙子大约多少立方米?(思考:要求圆锥形沙堆的体积,必须先求什么?再求什么?最后求什么?)

  ④塔的顶端近似于一个圆锥,它的底面周长是18.84米,高是6米,求塔顶端的体积?

  三、练习巩固

  1、填空:

  1、圆锥的体积=(                                ),用字母表示是(                    )。

  2、圆柱体积的  1/3 与和它(                )的圆锥的体积相等。

  3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是(         )立方分米。

  4、一个圆锥的底面积是12平方厘米,高是6厘米,体积是(            )立方厘米。

  5、一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米, 圆柱的体积是(     )。

  6、一个圆锥与一个圆柱等底等高,已知圆柱的体积是 12 立方厘米, 圆锥的体积是(    )。

  7、一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是(        )。

  8、一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12平方米,圆锥的高是(  )

  2、判断:

  (1)圆锥的体积等于圆柱体积的三分之一。(   )

  (2)一个圆锥的底面积扩大3倍,体积就扩大3倍。(  )

  (3)一个圆锥的高扩大3倍,体积就扩大3倍。(  )

  (4)圆柱体的体积一定比圆锥体的体积大(      )

  (5)正方体、长方体、圆锥体的体积都等于底面积高。                                                         (     )

  (6)等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米

《圆锥的体积》导学案 篇6

  教学目标:

  1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

  2、能运用公式解答有关的实际问题。

  3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

  教学重点:通过实验的方法,得到计算圆锥体积的公式。

  教学难点:运用圆锥体积公式正确地计算体积。

  教学过程:

  一、创设情境,引发猜想

  在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。

  小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积”后,就会弄明白这个问题。

  二、自主探索,操作实验

  1、出示学习提纲

  (1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?

  (2) 你们小组是怎样进行实验的?

  (3) 你能根据实验结果说出圆锥体的体积公式吗?

  (4) 要求圆锥体积需要知道哪两个条件?

  2、小组合作学习

  3、回报交流

  结论:圆锥的体积是等底等高的圆柱体积的1/3。

  公式:v=1/3sh

  4、问题解决

  小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

  5、运用公式解决问题

  教学例题1和例题2

  三、巩固练习 

  1、圆锥的底面积是5,高是3,体积是

  2、圆锥的底面积是10,高是9,体积是

  3、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  4、判断对错,并说明理由.

  (1)圆柱的体积相当于圆锥体积的3倍.( )

  (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )

  (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )

  四、拓展延伸

  一个圆锥的底面周长是314厘米,高是9厘米,它的体积是多少立方厘米?

  五、谈谈收获

  六、作业

《圆锥的体积》导学案 篇7

  教学目标:

  1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。

  2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。

  3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。

  教学重点、难点: 掌握圆锥体积公式。

  教具使用:  课件,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。

  教学过程:

  一、创设情境,问题导入

  1、师出示长方形、三角形纸各一张。

  提问:等底等高的长方形与三角形面积有什么关系?

  2、提问:旋转长方形,三角形各得到什么图形?

  长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。

  3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)

  4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?

  二、探究新知

  1、实验

  师出示:等底等高的圆柱、圆锥学具、水。

  师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?

  生动手实验:

  预设方案:①先灌满圆锥,3次倒入圆柱

  ②先灌满圆柱,3次倒入圆锥

  2、生演示汇报

  师板书:圆锥的体积  等于     圆柱体积的  

  质疑:

  追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。

  3、小结操作过程,课件演示。

  4、推导公式。让生说圆锥的体积用字母如何来表示?

  v锥= sh= πr2h

  三、实际应用

  (1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  生独立完成,师巡视,生板书。

  强调:1912 是与圆锥等底等高圆柱的体积,再乘

  1912=73(立方厘米)

  (2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.5米。每立方米小麦约重750千克,这堆小麦约有多少千克?

  生独立完成,师巡视,生板书

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

  3、填空

  ⑴一个圆锥的底面积是12平方厘米,高是6厘米,它的体积是(    )立方厘米。

  ⑵一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是(    )立方分米。

  ⑶一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是(    )立方厘米。

  4、判断:

  ⑴圆柱一定比圆锥体的体积大。(    )

  ⑵圆锥的体积等于和它等底等高的圆柱体积的 。 (  )

  ⑶正方体、长方体、圆锥体的体积都等于底面积高。(   )                         

  ⑷等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。(    )

  四、拓展提高

  有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  法一:(v柱 -v锥)  (6÷2)23.1415- (6÷2)23.1415=282.6(立方厘米)

  法二:(  v柱)    (6÷2)23.1415=282.6(立方厘米)

  五、课堂小结:这节课你有哪些收获?

  板书设计 

  圆锥的体积

  圆锥的体积  等于和它等底等高的圆柱体积的  

  v锥= sh= πr2h

  1912=73(立方厘米)

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

《圆锥的体积》导学案 篇8

  下面是《圆锥的体积》说课稿范文,欢迎参考!

  一、说教材

  1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重、难点:⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;⑵教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

  二、说教法

  著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时, 更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下四个教学程序:

  1、谈话导入

  ⑴出示圆柱:如果想知道这个容器的容积,怎么办?

  ⑵出示圆锥:如果想知道这个容器的容积,怎么办?

  2、教学例五

  ⑴引导观察:这个圆柱和圆锥有什么相同的地方?

  ⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

  ⑶讨论:可以用什么方法来验证你的估计?

  ⑷分组验证;引导学生用适合的方法进行操作验证。

  ⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

  ⑹ 讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

  ⑺完成“试一试”。

  3、巩固练习

  做“练一练”。

  4、归纳总结

  通过本节课你有什么收获?有哪些问题需要我们今后注意?

《圆锥的体积》导学案 篇9

  教学目标:

  1、能用实验的方法推导出圆锥体积的计算公式,并会用此公式计算出简单的圆锥的体积。

  2、培养学生空间观念和逻辑思维能力及实验操作能力。

  3、培养学生合作交流的能力及互相协作的意识。

  教学重点:用实验法推倒出圆锥的体积公式。

  教学难点:圆锥体积计算公式:“v圆锥=1/3sh"中乘以的道理和来历。

  教学关键:利用等底等高的圆柱体体积公式推导出圆锥体积公式。

  教学准备:圆柱以及也圆柱等底等高;等底不等高;等高不等底圆锥。

  教学方法:采用启发讨论式、实验探究式教学,鼓励学生大胆猜想,引导学生发现问题,并且进行验证。

  教学片段:动手操作,推导圆锥的体积计算公式:

  师:今天我们来研究圆锥的体积计算公式,你们先在心里猜一猜圆锥的体积计算公式应该是什么,不要说出来,等咱们研究过以后,看看谁的猜测是正确的。

  一、出示动手操作的步骤:

  1、自选圆锥。

  2、测量所选圆锥和圆柱底面和高之间的关系。

  3、用所选的圆锥往圆柱里倒水。(圆锥里的水要尽可能的满)

  4、记录实验的结果。 学生开始活动。

  二、根据实验的结果整理完成下表:

  等底等高的圆锥和圆柱 圆锥体积等于圆柱体积三分之一

  等底但不等高的圆锥与圆柱 圆锥的高高一些 圆锥体积大于圆柱体积三分之一

  圆锥的高矮一些 圆锥体积小于圆柱体积三分之一

  等高但不等底的圆锥与圆柱 圆锥的底面大一些 圆锥体积大于圆柱体积三分之一

  圆锥的底面小一些 圆锥体积小于圆柱体积三分之一

  三、推导圆锥的体积计算公式:

  师:通过实验,你能推出体积的计算公式吗?

  生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  即:v圆锥=1/3sh

  四:小结:

  师:我们通过实验推出了圆锥的体积计算公式,怎么样?和你猜想的一样吗?用你最酷的表情或者动作告诉老师。看来你们今天的收获真的不小,利用课余时间些一篇数学日记,就写今天课堂上的猜想——实验验证——得出结论——你的心情和想法。

  教学反思:

  在整个学习过程中,学生获得的不仅是新活的数学知识,更多的获得了探究学习的科学方法。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。课结束让学生写数学日记,这样有利于让学生学会自我评价,通过日记的方式,对新学的知识进行总结、反思。让学生写数学日记,还有利于师生之间的沟通交流。老师通过学生的数学日记,变式的和学生进行了交流,和谐了师生关系,起到了事半功倍的效果。

  但本节课的教学中,也有不尽人意的地方:

  1、因为教具的局限,部分同学没有亲自动手操作,只能做一个参观者,感到遗憾。  

  2、在用语言叙述自己的发现时,学生的口语表达欠准确,需要进一步培养学生在数学课堂中的口语表达能力。

《圆锥的体积》导学案 篇10

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

《圆锥的体积》导学案 篇11

  教学过程:

  一、情境引入:

  (1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

  (2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

  (3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

  (4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

  (5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

  设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

  二、新课探究

  (一)、探究圆锥体积的计算公式。

  1、大胆猜测:

  (1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

  (3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

  (4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

  (5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

  2、试验探究圆锥和圆柱体积之间的关系

  我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

  (1)课件出示试验记录单:

  a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

  b、通过实验,你发现了什么?

  (2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

  (3)汇报交流:

  你们的试验结果都一样吗?这个试验说明了什么?

  (4)老师用等底等高的圆柱圆锥装红色水演示。

  先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

  (教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

  (6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

  (这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

  3、公式推导

  (1)你能把上面的试验结果用式子表示吗?(学生尝试)

  (2)老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  (3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

  (二)圆锥的体积计算公式的应用

  1、已知圆锥的底面积和高,求圆锥的体积。

  (1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

  (2)提问:已知圆锥的底面积和高应该怎样计算?

  (3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

  2、已知圆锥的底面半径和高,求圆锥的体积。

  (1)出示例题:

  底面半径是3平方厘米,高12厘米的圆锥的体积。

  (2)学生尝试解答

  (3)提问:已知圆锥的底面半径和高,可以直接利用公式

  v=1/3兀r2h来求圆锥的体积。

  3、已知圆锥的底面直径和高,求圆锥的体积。

  (1)出示例3:

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  (5)提问

  :已知圆锥的底面直径和高,可以直接利用公式

  v=1/3兀(d/2)2h来求圆锥的体积。

  设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

《圆锥的体积》导学案 篇12

  《圆锥的体积》教学反思

  1、通过课堂评价促进小组探究学习的有效性

  我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。

  2、层次清楚,步步深入,重点突出

  在教学“圆锥的体积”时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  3、激发学生的求知欲

  新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  4、全体学生的积极参与,突出学生的主体作用

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  5、课堂教学后的改进

  关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。

  在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学生都有预习,“圆锥体积是圆柱体积的三分之一”很快从学生口中脱出。“那我们就来做个试验验证一下!”我给六个小组分别准备了等底等高、等底不等高、等高不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,“我们做的正好是三分之一”、“怎么回事?我们的是二分之一?”,“我们的是四分之一”……“是不是书上写错了?”学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,“等底等高”这一前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆心地强调“等底等高”,对“三分之一”的认识也深入学生之心,圆锥体积计算漏乘“三分之一”的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生学习的过程,就要有效利用“错误”这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和体验成功的乐园!

  圆锥的体积教学反思

  “实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

  以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

  怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具——等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

  推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

《圆锥的体积》导学案 篇13

  (一)教学过程及学生活动情况

  一、引入(2分钟)

  教师:我们在第一单元中认识了一个新的立体图形----圆锥。不知道大家是否还记得圆锥是由什么图形旋转而成的?是直角三角形。圆锥有什么特点?一个顶点,一条高,底面是圆,顶点到底面圆的圆心的距离叫做高。今天这节课,我们继续学习有关圆锥的知识,一起来探讨“圆锥的体积”怎么求(板书课题)

  学生:直角三角形

  二、探究新知(20分钟)

  教师:我们学过哪些立体图形的体积啊?

  学生:长方体、正方体、圆柱。

  教师:他们和圆锥有什么不同?

  学生:长方体、正方体、圆柱上下形状相同,圆锥不同。

  教师:他们的体积是怎么求的?

  学生:底面积*高。

  教师:那圆锥的体积会不会也是底面积*高?为什么?

  学生:不会,圆锥上下形状不一样。

  教师:看来,我们需要找到圆锥和什么图形的体积关系才行。

  教师:大家请看我手中的这个圆锥,我们知道圆锥的底面是一个圆,请同学们想一想,我们学过的什么立体图形的底面也是圆啊?

  学生:是圆柱。

  教师:现在老师这里有一个圆柱和圆锥,你们观察这两个模型,有什么相同点?底面有什么相同点?(形状,大小)高有什么相同点?   

  学生:底面都是圆,圆柱和圆锥的高和底面相等。

  教师:是不是相等,还需要同学们想办法比一比。这两个模型有这么多的相同点,那它们的体积会不会有什么关系呢?同学们觉得这两个模型哪一个的体积更大?为什么?

  学生:圆柱,圆锥上面是尖的。

  教师:这里有一盆水,如果我们把圆锥装满水,水的体积是不是圆锥的体积,如果我们把圆柱装满水,水的体积是不是就是圆柱的体积。因此要知道他们的体积关系就是找他们能装的水的体积关系,大家猜一猜用圆锥装水倒入圆柱,几次可以倒满?

  学生:2次,3次。

  教师:到底多少次就请同学们自己做一做。

  学生:用等底等高的圆柱和圆锥进行小组合作实验并完成“实验情况记载表。推出公式为圆锥的体积*3=圆柱的体积。

  教师:通过刚才的实验,我们知道圆柱所装的水是圆锥所装的三倍,也就是说,圆锥所装的水是圆柱的 。那圆锥的体积等于圆柱体积的 。

  教师:为什么我们不用长方体来做实验?

  答:把圆转化成面积相等的其他图形很麻烦,数学就是为了简便。

  教师:大家刚刚都做的很认真,但还不够准确,请再看一遍老师的演示。(写板书)         

  圆锥体积= 圆柱体积(等底等高)

  圆锥体积= 底面积高    

  v圆锥= sh

  三、实际应用(18分钟)

  1、圆锥的体积是圆柱的 。(   )

  学生:对的

  老师:(拿出一个很小的圆锥模型与圆柱模型让学生比较)他们两个还成这样的关系吗?

  学生:不成。圆锥很小,圆柱很大。

  教师:那我们要加上什么条件这句话才对啊?

  学生:等底等高

  2、如果小麦堆的底面半径为2米,高为1.5米。你能计算出小麦堆的体积吗?

  教师:题目告诉了我们什么条件,问题是什么?

  学生:告诉了小麦堆的底面半径和高,求小麦堆的体积。

  教师:小麦堆是什么形状?

  学生:圆锥

  教师:要求体积需要什么条件?

  学生:底面积和高

  教师:底面积和高知道么?

  学生:底面积不知道

  教师:知道什么,可以求出底面积吗?

  学生:知道半径,可以求出。

  教师:请同学们试着做一下。

  学生:解:v= sh= *3.14*22*1.5

  教师:注意运用乘法交换率。