分数乘整数 篇1
教学目标
使学生理解的意义,掌握的计算法则.
教学重点
使学生理解的意义,掌握的计算法则.
教学难点
引导学生总结的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + = =3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个表示什么?
求几个相同加数的和的简便运算.
(二)怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数乘整数 篇2
教学目标
使学生理解的意义,掌握的计算法则.
教学重点
使学生理解的意义,掌握的计算法则.
教学难点
引导学生总结的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + ==3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + =×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + ===(块)
方法2: ×3=+ + ====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + =×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + ====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 =×3=和 + + =×3=,说一说一个表示什么?
求几个相同加数的和的简便运算.
(二)怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + ===(块)
用乘法算: ×3=+ + ====(块)
答:3人一共吃了 块.
的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数乘整数 篇3
教学内容:教科书第8—9页的例1、例2,完成“做一做”及相应的练习。
教学目标:
1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义 相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。
2、培养学生合作探究的意识及良好的逻辑思维能力。
3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。
教学重点:掌握分数乘整数的计算法则。
教学难点:计算法则的推导
教学方法:类推法、猜想验证法、归纳法、小组合作法
教学过程:
一、 复习引入
1、 师口述:
① 5个12是多少?怎样列式?(12×5)
② 6个0.5呢?(0.5×6)
③ 3个 是多少?你会列式吗?( ×3)
师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)
2、 引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)
二、 合作探究、归纳法则
1、 师:看到这个课题,你都想知道关于它哪些方面的知识?
生1:分数乘整数该怎样计算?
生2:在计算时有什么要求或要注意的地方?
师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。
2、 师:大家知道吗?出示:
人跑一步的距离相当于袋鼠跳一下的 ,人跑3步的距离是袋鼠跳一下的几分之几?
你们有办法解决这个问题吗?好,大家先独立思考,有想法后可以和周围的同学交流一下。
3、 师:谁愿意先来发表一下你的看法?
生1:我列的是加法算式: + +
同分母分数相加减,分母不变,只把分子相加减。
即: + + = =
生2:我列的是乘法算式: ×3
我想:要求人跑3步的距离是袋鼠跳一下的几分之几,就是求3个 是多少?3个 就是 。
即: ×3=
生3:老师,我列的也是乘法算式: ×3
但我是这样计算的:用分子“2”和整数“3”相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得 。即: ×3= =
师:同学们的做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。
×3,大家说就是求3个 是多少,我们就可以写成3个 相加的形式,即: ×3= + + = = = 。现在大家再来看 ×3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成: ×3= =
4、 师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?
生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。
师:谁来再说一说?(多找几个学生说说,加深理解和记忆)
三、 运用新知、巩固练习
1、师:现在你会计算分数乘整数了吗?我们先闯第一关:
⑴计算: ×6(学生独立计算)
⑵成果展示:生1: ×6= =
生2: ×6= = =
生3: ×6= =
师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?
生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。
生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。
生3:第二位同学也约分了,我和他的做法一样,我们是严格按照计算法则进行计算的。
生4:我也认为第三位同学方法是值得借鉴的,虽然第二位同学也进行了约分,但他是到最后才进行约分的,数比较大,约分时我们不容易看出来,而第三位同学在计算过程中约分,数比较小,我认为不容易出错。
师:大家怎样认为?
师:大家的确很有眼力,在计算分数乘整数时,能约分的可以先约分,再计算。看来,我们在计算分数乘法时还不能提笔就做,先观察有没有要需要约分的,谁把这些技术性的问题处理好了,谁的技能真的就提高了。
师:大家会计算 ×6了,那6× 又该怎样计算?
生1:这道题不用计算了,结果和 ×6一样。
生2:计算方法也和前面一样,用整数和分子相乘的积作分子,分母不变。
师:就请同学们写出它的计算过程吧,写好后,同桌相互检查一下。
3、 现在来闯第二关:看谁计算得又快又好。(三位同学板演)
×4 ×8 2×
我们来看这几位同学做得怎样?(不错,方法掌握了,还能在计算过程中做到先约分,再计算,真棒!)
4、 下面是最后一关,看谁能顺利通过,注意把握机会哟!
根据提供的信息来解决问题:
(1)一袋面包重 kg ,3袋重多少千克?
(2)1只树袋熊一天大约吃 kg的桉树叶,10只树袋熊一星期大约能吃多少千克桉树叶?
①独立完成。
②交流:你对哪道题有兴趣,就向大家介绍哪道。
师:谁顺利通过了这三关,祝贺你,在你的本子上批上“优秀”,又错的同学改正后,也可以批“优秀”。
四、 全课总结
通过这节课的学习,相信你的收获一定不小,那就请你用不同的方式来展示一下吧!
分数乘整数 篇4
教学目标
使学生理解的意义,掌握的计算法则.
教学重点
使学生理解的意义,掌握的计算法则.
教学难点
引导学生总结的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + ==3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + =×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + ===(块)
方法2: ×3=+ + ====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + =×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + ====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 =×3=和 + + =×3=,说一说一个表示什么?
求几个相同加数的和的简便运算.
(二)怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + ===(块)
用乘法算: ×3=+ + ====(块)
答:3人一共吃了 块.
的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数乘整数 篇5
课题一:分数乘整数(a)
教学内容
教科书第1~2页的例1,练习一第1~3题.
教学目的
使学生理解分数乘整数的意义与整数乘法相同,掌握分数乘整数的计算法则,能够正确地进行计算.
教具准备
教师把例1的图做成教具,以供教学演示时使用.
教学过程
一、复习
1.做教科书第16页“复习”的第(1)题.
先让学生读题,独立列式计算.然后让学生说一说整数乘法的意义.使学生明确整数乘法的意义是求几个相同加数的和的简便运算.
2.做教科书第16页“复习”的第(2)题.
学生独立计算.集体订正时,让学生说一说这两道题各有什么特点.使学生明确两道题都是同分母分数相加,而右边的题三个分数是相同的,同样是分母不变,分子相加.
教师:像右边的题求几个相同的分数相加的和有没有更简便的方法呢?这就是今天我们要学习的──分数乘整数.
二、新课
1.教学例1.
教师出示例1.先让学生说一说题意.然后根据学生说的题意出示准备好的教具.
教师:每人吃了块,要求3个人一共吃了多少块,可以用什么方法计算?(可以用加法计算.)让学生列出加法算式.教师根据学生的回答,板书出计算过程.
用加法算:++===(块)
教师:求3个相加的和还可以用乘法计算.你能根据整数乘法的列式方法列出这道题的乘法算式吗?”
教师根据学生的回答,板书出乘法算式.
用乘法算:×3
教师:这个算式中的是什么数?(相同加数.)
“算式中的3是什么数?”(相同加数的个数.)
教师:“从这个算式中我们可以看出,分数乘整数的意义与整数乘法的意义是相同的.都是求相同加数的和的简便运算.那么,这道题应该怎样计算呢?”
教师让学生先按加法进行计算.教师根据学生的回答,在乘法算式的后面写出计算过程.
用乘法算:×3=++=
教师:分子上的2+2+2用乘法算式怎样表示?(2×3.)
教师接着把计算过程写完.
用乘法算:×3=++====(块)
2.总结分数乘整数的计算法则.
教师引导学生对照计算过程,总结分数乘整数的计算法则.
教师:“如果用乘法代替加法,只看×3和的计算过程,你发现分数乘整数是怎么计算的?”(分母不变,只用分子与整数相乘.)可以多让几个学生说一说.最后,概括出书上的结语:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
接着教师说明以后计算分数乘整数时,不必再写加法算式,直接根据分数乘整数的计算法则进行计算就可以了.同时指出,为了计算简便是,上面的乘法计算能约分的要先约分.可以这样写:
×3==
3.做教科书第2页“做一做”中的题目.
第1题,让学生看图写算式,使学生明确求相同分数的和既可以用加法,也可以用乘法,从而进一步明确分数乘整数的意义.
第2题、第3题让学生独立计算,教师巡视,对学习有困难的学生进行个别辅导.集体订正时,指名再说一说分数乘整数的意义、分数乘整数的计算法则以及怎样使计算简便.对×8如果有的学生没有先约分。要提醒学生应该先约分再计算.由于×8的计算结果是假分数,可以化成带分数(3).
三、巩固练习
1.做练习一的第1题.
要求学生仔细审题,独立解答.教师巡视,了解学生掌握的情况,发现问题及时纠正.
2.做练习二的第2、3题.
分数乘整数 篇6
学习目标:
1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。
2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点;分数乘整数的简便算法。
难点:分数乘整数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本p8---p9页
2、想一想,填一填
1)、5+5+5+5=( )× ( ) 表示( )个( )相加。
2)、1.2+1.2+1.2+1.2+1.2=( )×( )表示( )个( )相加。
3)、 + + =( )× ( )表示( )个( )相加。
4)、 × 4改写成加法算式是( )
3、看图填空。
1)、
( )+ ( )+ ( )= ( )
( )× ( )= ( )
2)、
( ) + ( ) + ( )+ ( )= ( )
( )× ( )= ( )
二、合作探究:
例1、人跑一步的距离相当于袋鼠跳一下的 。人跑3步的距离相当于袋鼠跳一下的几分之几?
小结:分数乘整数的意义:
例2、 × 5
小结:分数乘整数的计算方法:
例3、 6 × =
思考:你有什么技巧?
小结:分数乘整数的简便算法:
三、学以致用:
1、填空
1)、分数乘整数,用分数的( )和整数相乘的积作( ),( )不变。
2)、分数乘整数的意义与( )意义相同,都是求( )的简便计算。
3)、 × 4表示( )或表示( )
4)、 4个 的和是多少?用乘法计算可列式为( )。
2、计算
× 4 = 3 × = × 8 =
3、列式计算
1)、6个 相加的和是多少? 2)、 的5倍是多少?
4、解决问题
1)、一辆汽车每分钟行 千米,这辆汽车每小时行驶多少千米?
2)、李师傅加工一个零件 小时,加工24个零件需多少个小时?
5、附加题
1)、计算
× 2 =
2)、把下面的加法算式改写成乘法算式。
分数乘整数 篇7
六年级数学上册第二单元:分数乘法
第一课时:分数乘整数
学习目标
知识与技能:
(1)理解分数乘整数的意义
(2)通过主动探究,理解分数乘整数的计算法则的算理。概括出分数乘整数的计算法则,并能较熟练的正确计算。
过程与方法:
使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。
情感态度与价值观:
感受数学与实际生活间的联系,激发学习兴趣,培养学生良好的学习习惯,体会数学知识间的内在联系的逻辑美。
重点:理解分数乘整数的意义,掌握分数乘整数的计算法则。
难点:总结概括分数乘整数的计算法则,正确熟练的计算。
教学法:预习----反馈-----指导-----练习
教学过程:
一、预习指导:
1、3+3+3+3+…+3=( )( )=( )
10 个
2、2/29+2/29+2/29+2/29= ( )
也可以理解为( )个( )相加的和是多少?
列式为:( )( )
同样: 3/4+3/4+3/4+3/4+3/4=( )( )=( )
5/8+5/8+5/8=( )( )=( )
3、3/7+3/7+3/7+3/7+…+3/7=( )( )=( )
140个
4、预习课本第8页例1:
“人跑一步的距离相当于袋鼠跳一步的2/11”,把( )看作单位“1”平均分成( )份,人跑一步的距离是这样的( )份。跑三步的距离是这样的( )份。
看书理解掌握列式和计算过程。
二、预习反馈,探究新知:
1、学生汇报预习指导,老师了解学情。纠错指导。
2、指导学习例1:
电脑显示帮助理解:把袋鼠跳一下的距离看做一个整体,单位“1”,平均分成11份,人跑一步的距离相当于这样的2份,跑三步的距离就是这样的6份,(23)即为袋鼠跳一下的6/11。
2/113=6/11
3、师:通过学习理解,你知道分数乘整数的意义和计算方法了吧。练习一下:请说出下列各式的意义,再说出计算结果。
2/74= 5/193= 35/13=
小结:分数乘整数的意义:就是求几个相同加数和的简便计算。
分数乘整数的计算方法:用分子乘整数的积做分子,分母不变。
三、课堂练习:
1、6/74= 5/115= 310/13= 123/4= 155/18=
注意:在计算过程中,能与约分的先约分比较简单。因此:先约分再乘好!
2、4个5/9相加的和是多少? 6/7的35倍是多少?
3、2/5米=( )厘米 7/50吨=( )千克
4、一只树袋熊一天可以吃6/7千克的桉树叶。21只吃3天一共能吃多少千克的桉树叶?
5、不计算比较大小:说明理由。
6/79○6/7 6/71○6/7 6/76/7○6/7 51/2○5
拓展渗透:分数乘法的意义的第二层含义:表示一个数的几分之几是多少。
四、全课总结
五、布置作业。
分数乘整数 篇8
第二单元 分数乘法
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、 使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、 分数乘法计算法则的推导。
1、分数乘法
(1)分数乘整数 教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。 1、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。 教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。 教学难点:引导学生总结分数乘整数的计算法则。 教学过程: 一、复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。 + + 这题我们还可以怎么计算?今天我们就来学习分数乘法。 二、新授 1、 利用 + + 教学分数乘法。 (1) 这道加法算式中,加数各是多少?(都是 ) (2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3) (3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。 2、 出示例1,画出线段图,学生独立列式解答。 ?
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = ) 3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。 4、 练习:练习完成“做一做”第2题。 5、 教学例2 (1)出示 ×6,学生独立计算。 (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办? (3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。 (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习 1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯) 2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。) 三、作业 练习二第1、2、4题。
分数乘整数 篇9
教学目标
使学生理解的意义,掌握的计算法则.
教学重点
使学生理解的意义,掌握的计算法则.
教学难点
引导学生总结的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + ==3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + =×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + ===(块)
方法2: ×3=+ + ====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + =×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + ====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 =×3=和 + + =×3=,说一说一个表示什么?
求几个相同加数的和的简便运算.
(二)怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + ===(块)
用乘法算: ×3=+ + ====(块)
答:3人一共吃了 块.
的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启
学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数乘整数 篇10
教学目标
使学生理解的意义,掌握的计算法则.
教学重点
使学生理解的意义,掌握的计算法则.
教学难点
引导学生总结的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + = =3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个表示什么?
求几个相同加数的和的简便运算.
(二)怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数乘整数 篇11
泉在博客留言:请问现在新课程中的分数乘整数与整数乘分数的意义有没有区别?还是都表示为:几个相同分数相加?
1、从乘法的意义看
乘法的意义在小学阶段经历了三个不同认识过程:初步认识阶段(整数阶段或本意义阶段)----拓展阶段(推广到小(分)数乘以整数阶段)----变形叙述阶段(整数乘以小(分)数表述阶段)。无论哪个阶段,都没有脱离乘法的本真意义,即使到了整数乘以小(分)数阶段,表述为求一个数的10分之几,100分之几……是多少,(见人教版数学9册2页)那也可以理解成相同的加数不够一(几分之几)个了,按照教材上的例题,把米换成厘米或毫米,不就又转化成整数乘以整数的乘法了吗?我个人认为,虽然表述有变,但乘法本意义没有改变。引自
2、从课程标准要求看
课程标准上明确提出“结合具体情境,体会四则运算的意义。”,并在注解中说明取消了被乘数、乘数的概念,更没有提出它们的前后位置要求,取而代之的是因数(乘数)的概念。
因此讲整数乘法时,3乘4和4乘3表达的意义已没有什么区别了,那么分数乘法中分数乘整数与一个数乘分数还有必要再区分意义上的区别吗?没有必要。如 3乘3/4表示表示3的3/4是多少;也可以说表示3个3/4相加的和是多少。
3、从北师大教材及教学用书看
在分数乘法(一)提出的目标1是:“结合具体情境,在操作活动中,探索并理解分数乘整数的意义。”
在分数乘法(二)提出的目标1是:“结合具体情境,进一步探索并理解分数乘整数的意义。”
可以看出,北师大版认为分数乘整数和整数乘分数是一样的,都是分数与整数相乘。比如说1/3×2与2×1/3这两个算式表示的是同一个算式,它们都可以表示两层意义(特殊情境下除外),因此,叙述它们的意义时可以用这样的一些词“可以表示……”,“还可以表示……”。
如3的3/4是多少,列出的算式有3×3/4和3/4×3
再如3×3/4可以表示3的3/4是多少,还可以表示3个3/4相加的和多少。
分数乘整数 篇12
分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则
教具准备:多媒体课件、
教学过程:
一、复习引入
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、 课件出示例1
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?
2/11 + 2/11 + 2/11 =
2/11 × 3 =
(3).分数乘以整数的法则。
A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
B.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、 教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)
1.看图写算式
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、学生课堂自评
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计
分数乘以整数
意义:求几个相同加数 和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11 ×3
= 2×3/11
= 6/11
分数乘整数 篇13
教学片断:
师:哪些同学知道3/10×3的计算结果?
(绝大多数学生举起了手,部分同学迫不及待地说出了答案:9/10。)
师:说一说你是怎么计算的?
生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以,3×3=9,分子是9,分母仍然是10,结果就是9/10。
(举手的学生都点头表示同意生1的发言,有个别学生表示是从课外数学班的学习中了解到的。)
师:老师也同意用这个方法进行分数与整数相乘的计算。对于这个内容,大家还有什么疑问?
生2:为什么只把分子与整数相乘,分母10不和3相乘?
师:多好的问题!(这个问题正是理解算理的关键。)大家有什么想法?可以在小组内交流。
(几分钟以后,许多同学举起了手。)
生3:我是这么想的:3/10表示3个1/10相加,同分母分数加减法的计算法则是,分母不变,只把分子相加减。所以分母不变,只计算分子3+3+3,也就是3×3就可以了。
师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!
生4:3/10里面有3个1/10,3/10的3倍就是有9个1/10,也就是9/10。
师:你对分数的计算单位以及分数单位的个数理解得很透彻!
生5:如果将3/10的分子和分母都乘3,根据分数的基本性质,结果还是3/10,而不是3个3/10。
师:生5从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。
生6:我认为3/10等于0.3,0.3×3等于0.9,也就是9/10。所以,3/10×3等于9/10。
生7:我想给大家举个例子说明3/10×3等于9。老师拿来10支粉笔,每天用去3/10,也就是3支,三天用去9支,也就是用去这些粉笔的9/10。
师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。
[反思]
在这一片断中,学生积极主动地投入到问题的研讨和解决之中,课堂气氛轻松、活泼。反思这一教学过程的成功,主要有以下两个原因。
一、尊重学生的“数学现实”。
在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论“灌输”给学生,省去了获取结论的研究过程,意在让学生问“为什么”。这时学生抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母10不和3相乘?”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学学习的个性化。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。