加法交换律

2023-07-08

加法交换律 篇1

  教学内容:六年制小学数学第七册第22页。

  教学目标 

  1.能从实际例子中,观察、概括出。

  2.理解掌握,会用字母公式表示。

  3、提高观察、概括能力。

  教学过程 

  (一)呈现事实,形成问题

  1.出示准备题:

  27+73      73  +27

  58+37      37+58

  2.学生计算得数。

  3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

  4、根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。

  5.问题:这个猜想正确吗?

  (二)验证猜想,形成结论

  1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

  女生完成:3024+76     96+237

  男生完成:76+3024     237+96

  学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

  2、同学自己设计一组式题验证,小组交流结果,汇报结论。

  3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例

  全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

  例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

  (1)口答列式:476+518      518+476

  为什么这样列式?

  (2)判断:得数会相同吗?

  (3)计算结果,得出结论:476+518=518+476

  为什么会相等呢?固为根据加法的意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

  4.揭题:这就是我们今天要学习的(板书)

  5.学生自学书本、质疑。

  6.小结:

  (1)什么是?

  (2)用字母a、b表示。板书:a+b=b+a

  (三)应用成果,巩固新知

  1.学习的最终目的是用。

  问:验算加法,我们用什么方法?根据什么?

  2.“练一练”1,先计算出得数,再用进行验算。

  问:验算方法运用什么运算定律?

  3、“练一练”

  (1)分组完成。(每组一生板演,比赛形式进行)

  (2)指名说出验算方法和根据。

  4、放录音、做游戏——“我该在什么位置”

  470+830=830+    101     3+214=       十       

  256+214=          +256               十 367=367 +       

  (1)将卡片470、880、1013、214、58、58发给六个同学。

  (2)伴随音乐,寻找自己的位置,并贴上。

  (3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了。

  (四)反思过程,学会学习

  1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

  3.质疑:满足“和不变”这一要求,有没有其他可能?

  如:37+73=     +          在     中可以填哪些数据?

  (五)作业 :

加法交换律 篇2

  教学内容:六年制小学数学第七册第22页。

  教学目标 

  1.能从实际例子中,观察、概括出。

  2.理解掌握,会用字母公式表示。

  3、提高观察、概括能力。

  教学过程 

  (一)呈现事实,形成问题

  1.出示准备题:

  27+73      73  +27

  58+37      37+58

  2.学生计算得数。

  3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

  4、根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。

  5.问题:这个猜想正确吗?

  (二)验证猜想,形成结论

  1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

  女生完成:3024+76     96+237

  男生完成:76+3024     237+96

  学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

  2、同学自己设计一组式题验证,小组交流结果,汇报结论。

  3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例

  全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

  例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

  (1)口答列式:476+518      518+476

  为什么这样列式?

  (2)判断:得数会相同吗?

  (3)计算结果,得出结论:476+518=518+476

  为什么会相等呢?固为根据加法的意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

  4.揭题:这就是我们今天要学习的(板书)

  5.学生自学书本、质疑。

  6.小结:

  (1)什么是?

  (2)用字母a、b表示。板书:a+b=b+a

  (三)应用成果,巩固新知

  1.学习的最终目的是用。

  问:验算加法,我们用什么方法?根据什么?

  2.“练一练”1,先计算出得数,再用进行验算。

  问:验算方法运用什么运算定律?

  3、“练一练”

  (1)分组完成。(每组一生板演,比赛形式进行)

  (2)指名说出验算方法和根据。

  4、放录音、做游戏——“我该在什么位置”

  470+830=830+    101     3+214=       十       

  256+214=          +256               十 367=367 +       

  (1)将卡片470、880、1013、214、58、58发给六个同学。

  (2)伴随音乐,寻找自己的位置,并贴上。

  (3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了。

  (四)反思过程,学会学习

  1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

  3.质疑:满足“和不变”这一要求,有没有其他可能?

  如:37+73=     +          在     中可以填哪些数据?

  (五)作业 :

加法交换律 篇3

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

  教学准备:配套课件

  教学过程:

  一、课前谈话。有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

  二、教学加法交换律。1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人? ②参加活动的女生一共有多少人? ③跳绳的男生和踢毽子的女生一共有多少人? ④参加活动的一共有多少人?   设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。2、今天这节课,我们就一起来研究其中的这两个问题:在黑板上张贴:参加跳绳的一共有多少人? 参加活动的一共有多少人?我们先来解决第一个问题:参加跳绳的一共有多少人?3、你们能马上口头列式并口算出结果吗?指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)为什么这两个算式的结果一样?4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。9、练习:完成想想做做第一题前面两小题。 设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

  三、学习加法结合律。1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。3、学生回答,教师有意识地板书:(28+17)+23=68(人)28+(17+23)(28+23)+1728+(23+17)(23+17)+2823+(17+28)让回答的同学说说这么列式是怎么思考的?下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。 4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)5、电脑出示:下面的ο里能填上等号吗?(45+25)+13ο45+(25+13)(36+18)+22ο36+(18+22)学生回答,教师板书:(45+25)+13=45+(25+13) (36+18)+22=36+(18+22)6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。8、完成“想想做做”第1题的后面两个小题。设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  四、巩固练习。

  1、完成“想想做做”第2题。第4小题引导学生发现是运用了加法交换律和加法结合律。

  2、完成“想想做做”第3题第1行。

  3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

  4、完成“想想做做”第4题。使学生初步感受应用加法运算律可以使计算简便。设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

  五、课堂总结。通过本节课的学习,你有什么新的收获?设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。 板书设计:          

  加法交换律     

  28+17=45(人) 17+28=45(人)    

  加法结合律 

  (28+17)+23   28+(17+23) 28+17=17+28    =45+23 =28+40              =68 (人) =68(人)

  (28+17)+23=28+(17+23)     

  (45+25)+13=45+(25+13) (36+18)+22=36+(18+22) a+b=b+a           (a+b)+c=a+(b+c)

加法交换律 篇4

  课题一:加法的意义和加法交换律

  教学内容:教科书第48—49页的内容,练习十一的第1—4题。

  教学目的:

  1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

  2、使学生理解并掌握加法交换律。

  教学重点:加法的意义

  教学难点 :加法交换律

  教具准备:小黑板

  教学过程 :

  一、教学加法的意义

  教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

  1、加法的意义。

  (1)教学例1。

  教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

  137千米      357千米

  北京      天津                济南

  然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

  “加法是什么样的运算?”

  在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

  (2)做练习十一的第1题。

  要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

  2.加法各部分的名称。

  教师指着137+357=494,提问:

  137和357在加法算式中叫什么数?(加数。)

  它们相加得到的结果494叫什么?(和。)

  然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

  1 3 7 + 3 5 7 =4 9 4

  加数+加数=和

  提问:

  “我们上面做的加法,两个加数是什么样的数?”(自然数。)

  “任何两个自然数相加得到的和都比加数怎样?”(大。)

  “一个自然数和0相加得到的和怎样呢?”(还得原数。)

  “你能举出一个自然数和0相加的几个例子吗?”

  教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

  然后接着问:

  “0和0相加会怎样?”(还得0。)

  “人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

  二、教学加法交换律

  教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

  1、结合例1的两种解法,引导学生比较它们的特点。

  提问:

  “上面”的例1,求北京到济南的铁路长是怎样列式计算的?”

  “如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

  学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

  接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

  然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

  引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

  2.再出两组算式,引导学生比较,加以概括。

  提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

  教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

  教师板书出下面的算式:

  18+17   17+18

  124+235   235+124

  让学生算一算,再提问:

  “每组算式有什么关系?   里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

  3.比较三个等工,归纳出一般规律。

  引导学生归纳,突出以下几点:

  (1)这三个等式中,每组算式有几个加数?(两个加数)

  (2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

  4.用字母表示加法交换律。

  教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

  学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

  学生回答后,教师板书:a+b=b+a

  说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

  接着教师提问:

  “想一想我们在以前学过的哪些计算中用到了加法交换律?”

  使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

  5.做第48页的“做一做”。

  第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

  第2题,验算的竖式可以直接写在原始的右边。

  三、巩固练习

  做练习十一的第2—4题。

  1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

  2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

  四、小结

  教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

加法交换律 篇5

  作者:扬州市梅岭小学 凌丽 高邮市教育局教研室 汪泰

  教学内容:

  苏教版四年级上册p56-57例题。

  教学过程:

  一、创设情境,导入新课(屏示主题图)。

  图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?(屏示问题。)

  二、探索加法交换律:

  1.在情境中初步感知加法交换律。

  学生列式:28+17=45(人)或17+28=45(人)。

  同样的一幅图,同样的一个问题,我们列出了两道不同的算式,其中“28+17"是用男生人数加上女生人数,“17+28”呢?(女生人数加上男生人数)

  两道算式都表示把男生人数和女生人数合起来,所以都等于?(45人)

  两道算式得数相同,我们可以用“=”把它们连成一个等式。(屏示等式:28+17=17+ 28)

  【评析:使用新教材后,许多教师对数量关系的运用弱化了,不少老师在这里就算式论算式,就运算论运算,出了力,却效果差,此处让学生根据已知条件,紧扣数量关系来列式,为理解加法意义服务。由于学生思考的角度不同,所依据的数量关系和列出的算式也就不同,因此运算的顺序也就不同,为教学下面的内容作了很好的铺垫。】

  2.观察等式,发现个案特点:

  仔细看,等号左右两边有什么相同?

  ——都是在加法中,两个加数相同,得数都等于45。(板书:加法)

  不同呢?——两个加数的位置不同。

  位置怎样了?(屏示动态交换过程)(板书:交换)

  3.举例验证,并简要表示规律。

  像这样的等式你能再写几个吗?(汇报时,教师在屏幕上输出学生举出的等式:)

  追间:类似这样的等式能写完吗?(屏示省略号。)

  虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,你发现了吗?交流一下。

  师小结:两个数相加,交换加数的位置,和不变。

  刚才,我们用语言把加法中的这个规律表达了出来,其实,我们还可以用一些更为简洁的方式来表达,比如用汉字、图形、字母等写成等式,也能表示这样的规律,你能用自己喜欢的方式来表达吗?(在实物投影上展示交流。)

  【评析:多媒体课件有效而不花哨,通过图片、数据的移动,对学生感知加法交换律起了很好的意会作用;同时根据学生的回答,在屏幕上随机生成算式,激发了学生的学习热情,让学生感受到类似算式所具有的普遍性,为抽象出加法交换律奠定基础。】

  4.用字母表示交换律:

  刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。

  在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

  加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

  ——加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

  【评析:第一次观察交流,是让学生初次感受算式的特点,并能仿写出来;第二次看和说,有助于学生用语言和符号来归纳出算式的特点。看和说都是学生自己在活动,学生相互间的说,打破了课堂中一对一的交流形式,增加了表述的时空。学生用符号和文字表示算式后,再次让学生说出符号和文字所表示的意义,让学生经历由数上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。】

  5.巩固练习(抢答)。(屏示:你能根据运算律填一填吗?)

  屏示:96+35=35+□ 204+□=57+204

  37+□=59+□ 76+□=□+76

  这4道练习都用到了哪个运算律?(加法交换律)

  三、探索加法结合律。

  1.在情境中初步感知加法结合律。

  回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

  仔细看(屏示大括号),你看懂了吗?(求参加活动的一共有多少人?)

  有三部分,你打算先求什么?(跳绳的有多少人?)(屏示动态结合过程)会列综合算式吗?(28+17)+23。

  师:你给28、17加上了括号,表示什么?(先算28加17)先把跳绳的人数合起来,再加上踢毽子的人数。

  还可以先求什么?(女生的总人数)(屏示动态结合过程)现在算式怎么列?

  28+(17+23),现在括号加在了什么位置?表示什么?(先算17加23),也就是先把女生的人数合起来,再加上男生的人数。

  两道算式都能求出参加活动的总人数,会计算吗?要求:一、二两组算第一题,三、四两组算第二题:

  汇报:两道算式都等于68人,得数相同!

  2.比较异同点,连成等式。(屏示:(28+17)+23,28+(17+23))

  两道算式完全一样吗?有什么不同?

  ——第一道括号在前,表示先把前两个数相加,再和第三个数相加。

  第二道括号在后,表示先把后两个数相加,再和第一个数相加:

  运算的顺序不同,为什么得数还相同呢?

  ——因为两道算式都是把28、17、23三个加数相加。

  师:三个加数是相同的,就连先后的位置也相同,所以得数相同,连成等式!(动态屏示等式:)

  3.感知众多案例,积累感性认识。

  凌老师这里还有两道算式,注意看!(屏示:(13+45)+25,13+(45+25))

  猜一猜,它们的得数可能会怎样?悄悄告诉同桌!

  同桌分工,一人算一道,看看结果怎样?

  汇报:左右得数相同,连成等式!(屏示:“=”)

  再看,(屏示:(36+18)+22和36+(18+22))。

  仔细观察,大胆猜测,它们的结果又会怎样?

  认为相同的举手!为什么这么肯定?(因为都是这三个数相加,只不过运算顺序不同,但得数还是相同的)口说无凭!(屏示:?)还得算算!左边?右边?得数确实一样,你们真厉害!(?消失)

  猜得这么准,你们是不是隐隐约约发现什么规律了?能说说吗?(屏示三组等式)这三组等式中都是三个数相加,左边都是先把前两个数相加,再和第三个数相加,右边都是?(先把后两个数相加再和第一个数相加)它们的和都怎么样?(不变)。

  4.猜测规律,举例验证。

  这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

  像这样举出的例子,被同桌证实和不变的举手!有没有同学举出的例子左右两边和不相同的?这样的例子能举完吗?(屏示省略号)

  5.归纳加法结合律。

  看来,我们的发现不仅仅是巧合,三个数相加一定有规律!

  师生共同小结:三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。

  师:这个规律又是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)

  加法结合律也可以用字母来表示,现在需要几个字母?(3个,a、b、c)

  你能用丰母把加法结合律表示出来吗?(板书:(a+b)+c=a+(b+c))

  【评析:“猜测一举例验证一归纳结论一运用”是教学运算律的主要思路,此处重视学习方法的指导与形成。两次列式得出两个运算律,第一次重在方法的形成,第二次重在方法的运用。】

  6.小结。(略)

  四、巩固练习。(作业纸)

  1.你能在方框内填出合适的数吗?

  (45+36)+64=45+(36+□)

  (72+20)+□=72+(20+8)

  560+(140+70)=(560+□)+□

  2.你能把得数相同的算式连一连吗?

  (1)72+16 a.(75+25)+48

  (2)45+(88+12) b.16+72

  (3)75+(48+25) c.(45+88)+12

  真了不起!完成得这么好,还有两道算式也想请你们帮帮忙呢,愿意吗?如果这两道算式得数相同,你就起立证明自己的观点,看谁反应快!准备!

  (84+68)+32 84+(68+23)

  哎,站了又坐下去,怎么回事?不能连!为什么?(三个加数中有一个不同了)哪个加数不同?一个是32,一个是23,既然两边不等,那你知道哪边大吗?现在你有什么想说的?(看题要仔细)

  【评析:巧用“上当法”,制造错误陷阱,使学生在不经意间犯错。在一路都对的情况下,思维定势让学生必然要错,然而,这样的错误对于学生来说,记忆却异常深刻,旨在使学生认识到,计算时一定要仔细看清题目。】

  3.渗透简算意识。

  计算比赛:一二两组算左边,三四两组算右边,不写过程,直接写得数,半分钟,看哪组速度最快!

  45+(88+12) (45+88)+12

  时间到!停笔!我宣布,一二两组快!三四两组慢!凌老师这样评价,你们有话要说吗?尤其是三四两组!不公平?左边算式中先算88加12,正好凑成100。右边呢?(凑不成100)能凑整的快是吗?

  好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25) (75+25)+48

  等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。

  原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课研究的内容!

  【评析:根据运算律进行简便计算,是下面的内容,对学生来说并不难。但要让学生形成简便计算的意识,比会进行简便计算更重要。因此此处通过口算比赛,让学生在比先后的过程中,萌发如何计算快的意识,其实就是运用运算律使计算简便的过程,继而在自选口算题的过程中,学生能自发地运用运算律。在这里,无需教师过多的讲解,学生在计算中便感受到了运算律的作用。】

加法交换律 篇6

  1、教材分析

  “加法交换律和加法结合律”是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。

  2、目标分析

  (1)教学技能目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

  (2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。

  (3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

  二、说教学过程

  (一)探索加法交换律:

  这部分分成4步进行

  1、感知规律

  课的开始出示第56页的例题(前两幅图),通过解决“参加跳绳的一共有多少人?”得出一个等式,从而导入新课,进行加法交换律的研究。

  (设计意图:用学生身边事情引入新知,并为下而面的探究呈现素材。)

  2、验证规律

  (1)组织学生观察这个等式的特点,然后自己照样子仿写等式。

  (2)运用自己写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

  (设计意图:丰富学生的表象,进一步感知加法交换律。)

  3、概括规律

  (1)通过自己仿写式子,独立思考或小组讨论,引导学生概括出规律,尝试用语言表述。

  (2)用自己喜欢的形式表示出来着重强调用字母来表示加法交换律的简便性。

  (设计意图:帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。)

  4、巩固规律

  出示一组填空,根据加法交换律填出所缺的数字

  (设计意图:一个规律教授结束就配以针对性的练习,既有利于概念的正确建立,同时也及时地巩固了新知。)

  (二)探索加法结合律:

  1、感受规律。

  在学生解决“三个项目共得多少分?”过程中得出等式。学生交流各自列式,并让学生说清列式理由。选择两种不同列式,探索规律。

  (设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

  2、验证规律

  (1)教师出示两组题目,判断左右两边是否可以写等号,分别算一算。

  (2)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

  3、揭示规律

  (1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

  (2)按照这种规律,你还能写出这样的算式吗?

  (3)用字母表示这样的规律。

  (设计意图:多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

  4、巩固规律。出示针对结合律的一些填空,巩固新知。

  三、实践应用

  1、书面训练

  (1)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

  (2)想想做做5

  (设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

  2、活动训练。游戏“找朋友”

  (1)如:师说出“2”,学生要找出它的好朋友“8”,因为“2”和“8”和是“10”,教师配合学生完成。

  (2)找出与一个数和是100的数。同学配合完成。

  (设计意图:让学生在游戏中意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。)

加法交换律 篇7

  教学内容:六年制小学数学第七册第22页。

  教学目标 

  1.能从实际例子中,观察、概括出加法交换律。

  2.理解掌握加法交换律,会用字母公式表示加法交换律。

  3、提高观察、概括能力。

  教学过程 

  (一)呈现事实,形成问题

  1.出示准备题:

  27+73      73  +27

  58+37      37+58

  2.学生计算得数。

  3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

  4、根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。

  5.问题:这个猜想正确吗?

  (二)验证猜想,形成结论

  1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

  女生完成:3024+76     96+237

  男生完成:76+3024     237+96

  学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

  2、同学自己设计一组式题验证,小组交流结果,汇报结论。

  3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例

  全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

  例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

  (1)口答列式:476+518      518+476

  为什么这样列式?

  (2)判断:得数会相同吗?

  (3)计算结果,得出结论:476+518=518+476

  为什么会相等呢?固为根据加法的意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

  4.揭题:这就是我们今天要学习的“加法交换律”(板书)

  5.学生自学书本、质疑。

  6.小结:

  (1)什么是加法交换律?

  (2)用字母a、b表示加法交换律。板书:a+b=b+a

  (三)应用成果,巩固新知

  1.学习加法交换律的最终目的是用。

  问:验算加法,我们用什么方法?根据什么?

  2.“练一练”1,先计算出得数,再用加法交换律进行验算。

  问:验算方法运用什么运算定律?

  3、“练一练”

  (1)分组完成。(每组一生板演,比赛形式进行)

  (2)指名说出验算方法和根据。

  4、放录音、做游戏——“我该在什么位置”

  470+830=830+    101     3+214=       十       

  256+214=          +256               十 367=367 +       

  (1)将卡片470、880、1013、214、58、58发给六个同学。

  (2)伴随音乐,寻找自己的位置,并贴上。

  (3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

  (四)反思过程,学会学习

  1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

  3.质疑:满足“和不变”这一要求,有没有其他可能?

  如:37+73=     +          在     中可以填哪些数据?

  (五)作业 :

加法交换律 篇8

  教学设计

  教学内容:苏教版国标本四年级(上)教材p56-58页内容

  教学目标:

  1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交     换律和结合律。

  2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。

  3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:

  使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:

  使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

  课程资源的开发与利用:多媒体课件

  教学过程:

  一、 创设情境,初步感知

  1、课前谈话(讲“朝三暮四”的故事)

  听了这个故事,你想说些什么呢?(交换、不变)

  2、情境引入

  (1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)

  (2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)

  (3)师:你能提出用加法计算的问题吗?

  ①参加跳绳的一共有多少人?

  ②参加活动的女生一共有多少人?

  ③跳绳的男生和踢毽子的女生一共有多少人

  ④参加活动的一共有多少人?

  (2)我们先来解决第一个问题:参加跳绳的一共有多少人?

  你们能马上口头列式并口算出结果吗?

  指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)

  观察比较这两个不同算式的计算结果。提问:你们发现了什么?

  引导学生说出:28+17和17+28的结果都是45。

  教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+1717+28)

  (如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。

  2、在列举中验证规律

  象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。

  谁愿意来交流。

  提问:你写了几个?说说看 。

  根据学生回答,教师相机板书算式,

  有没有比她多的 。

  提问:指着板书,你们写的时候有没有什么规律?

  学生能说到加数不变,交换位置,结果是一样的就行。

  按照这样的规律,如果老师给你时间你还能写吗?

  能写几个?无数个,写不完,用省略号表示(板书……)

  3、在反思中概括规律

  有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?

  需要合作的同学,可以四人小组合作。教师巡视搜集信息。

  估计情况:  甲数+乙数=乙数+甲数,……

  请同学起来交流:

  如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。

  小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。

  指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。

  5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)

  三、学习加法结合律。

  1.在情境中感受规律

  刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?

  你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。

  交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)

  有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)

  如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。

  观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)

  提问:它符合加法交换律吗?(不符合,加数的位置没变)

  提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)

  引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。

  2、在计算中验证规律。

  再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。

  (45+25)+13ο45+(25+13)

  (36+18)+22ο36+(18+22)

  如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。

  学生回答,教师板书:(45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?    

  你还能写出类似的等式吗?汇报前置性作业第五题。

  指名几个学生回答,追问:你是怎么想的?

  回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。

  有这样规律的算式多吗?板书……

  3、揭示加法结合律

  观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?

  小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

  提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?

  板书:(a+b)+c=a+(b+c)

  跟老师一起读一遍。

  指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如:

  9+7想:

  =9+(1+6)

  =(9+1)+6

  =10+6

  =16

  三:巩固内化,拓展应用。   

  1、课件出示想想做做第1题。  

  师:下面的加法等式各应用了什么运算律?先说给同桌听听。  

  师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。 

  2、课件出示想想做做第2题:  

  师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。  

  师:第三、四两道算式 ,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。  

  3、课件出示想想做做第4题。  

  师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。   

  (1)38+76+24                    (3)(88+45)+12   

  (2)38+(76+24)                  (4)45+(88+12)   

  师:对于这样的比赛结果,你有什么话想说?

  比较每组中的两道题有什么联系?哪道题计算更简便些?  

  师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。  

  4、完成想想做做第5题  

  师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。

  师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)

  5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)

  6、你想和班级中哪几号同学交朋友?

  四、课堂总结

  师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。

  板书设计:

  加法的运算定律 

  加法交换律                                 加法结合律

  28+17=45(人) 17+28=45(人)   (28+17)+23  28+(17+23)

  28+17=17+28                 =45+23       =28+40

  17+23=23+17                 =68(人)    =68(人)

  学生汇报的算式                  (28+17)+23=28+(17+23

  (45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  a+b=b+a                                (a+b)+c=a+(b+c)

加法交换律 篇9

  一、说教材

  (一)教材分析

  “加法交换律和加法结合律”是国标版苏教版小学四年级上册第8 单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

  (二)学情分析

  (三)目标定位

  根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:

  (1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

  (2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  (3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

  教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

  教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。

  二、说教学程序

  鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。

  (一)探索加法交换律:

  这部分分成4个环节进行

  1、在情境中初步感知规律

  课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。

  (设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)

  2、在例举中验证规律

  (1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。

  (2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

  (设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)

  3、在反思中概括规律

  (1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。

  (设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)

  (2)用字母来表示加法交换律

  (设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)

  4、练习

  (1) 填空、(2)判断、(3)验算

  (设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)

  (二)探索加法结合律:

  整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。

  1、在情境中感受规律。

  以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,

  (1)学生一起解决“三个项目共得多少分?”

  (2)交流学生各自列式,并让学生说清列式理由。

  (3)选择两种不同列式,探索规律。

  (设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

  2、在计算中验证规律

  (1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。

  (2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。

  (3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

  (设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。

  3、揭示加法结合律

  (1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

  (2)按照这种规律,你还能写出这样的算式吗?

  (3)用字母表示这样的规律。

  (设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

  三、实践应用

  (设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。

  1、基础训练,分三个层次

  (1)想想做做1:运用了加法的什么定律?

  通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。

  (2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

  (3)想想做做5

  (设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

  2、拓展练习,分二个层次

  (1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。

  (2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。

  四、评价鼓励

  (设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)

  五、教法、学法

  以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”

  板书设计:

  (设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)

加法交换律 篇10

  课题:(小学数学人教版第八册)

  授课教师:王晓华(六里坪镇财神庙小学)

  教学内容:教材第48、49页的例1和例2,练习十一的第1、2题。

  教学要求:

  1、使学生在已有加法知识的基础上,理解并概括,能从感性认识上升到理性认识。

  2、培养学生初步的归纳推理能力。

  教学重点:加法交换律

  教学难点 :使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

  教学准备:小黑板

  教学方法:启发式

  教学过程 

  一、课题提示

  我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

  二、教学新课

  (一)、教学加法的意义。

  1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

  2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?

  3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?

  4、说出式中的各部分的名称。什么是加数?什么是和?

  5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

  (二)教学加法交换律。

  1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

  2、为什么用加法算?

  3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?

  4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

  5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

  6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?

  说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。

  7、巩固练习:教材第49页的“做一做”。(出示小黑板)

  (1)填空。

  ①把两个数合并成( )个数的( ),叫着加法;相加的两个数叫做( ),加得的数叫做( )。

  ②86+124=( )+86 ( )+25=25+a

  ③两个数相加,交换它们的位置,它们的( )不变。

  ④418+382=382+418,这是应用了加法的( )律。

  ⑤一个数加上( ),是原数。

  (2)判断。(对的打“√”,错的打“×”)

  ①任意两个数的和,一定比这两个数大。( )

  ②下面哪些算式符合加法交换律?

  430+270=280+420( ) 28+a=a+28

  570+250=250+570( ) 40+30+10=40+10+30( )

  ③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )

  8、想一想,我们以前在哪里曾经用加法交换律?(加法验算)

  三、课堂小结

  说一说的含义。

  四、作业 布置

  练习十一的第1、2题。

  附板书:

  例1(略) 7+0=7 0+7=7 0+0=0

  (画示意图) 一个数加上0,还得原数

  137+357=494(千米)

  137+357=494(千米) 137+357=357+137

  加数 加数 和                              18+17㈡17+18

  答:(略)               两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

  把两个数合并成一个数的运算,叫做加法。   a+b=b+a

加法交换律 篇11

  一、导入部分

  上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。

  反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。

  二、探究规律

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。

  反思:

  教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。

  总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。

  1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。

  2、对“关注每一位学生”这个问题,没有做到。

加法交换律 篇12

  一、导入部分

  上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。

  反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。

  二、探究规律

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。

  反思:教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。

  总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。

  1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。

  2、对“关注每一位学生”这个问题,没有做到。

加法交换律 篇13

  课题:加法的意义和加法交换律(小学数学人教版第八册)

  授课教师:王晓华(六里坪镇财神庙小学)

  教学内容:教材第48、49页的例1和例2,练习十一的第1、2题。

  教学要求:

  1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。

  2、培养学生初步的归纳推理能力。

  教学重点:加法交换律

  教学难点 :使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

  教学准备:小黑板

  教学方法:启发式

  教学过程 

  一、课题提示

  我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

  二、教学新课

  (一)、教学加法的意义。

  1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

  2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?

  3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?

  4、说出式中的各部分的名称。什么是加数?什么是和?

  5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

  (二)教学加法交换律。

  1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

  2、为什么用加法算?

  3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?

  4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

  5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

  6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?

  说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。

  7、巩固练习:教材第49页的“做一做”。(出示小黑板)

  (1)填空。

  ①把两个数合并成( )个数的( ),叫着加法;相加的两个数叫做( ),加得的数叫做( )。

  ②86+124=( )+86 ( )+25=25+a

  ③两个数相加,交换它们的位置,它们的( )不变。

  ④418+382=382+418,这是应用了加法的( )律。

  ⑤一个数加上( ),是原数。

  (2)判断。(对的打“√”,错的打“×”)

  ①任意两个数的和,一定比这两个数大。( )

  ②下面哪些算式符合加法交换律?

  430+270=280+420( ) 28+a=a+28

  570+250=250+570( ) 40+30+10=40+10+30( )

  ③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )

  8、想一想,我们以前在哪里曾经用加法交换律?(加法验算)

  三、课堂小结

  说一说加法的意义和加法交换律的含义。

  四、作业 布置

  练习十一的第1、2题。

  附板书:

  加法的意义和加法交换律

  例1(略) 7+0=7 0+7=7 0+0=0

  (画示意图) 一个数加上0,还得原数

  137+357=494(千米)

  137+357=494(千米) 137+357=357+137

  加数 加数 和                              18+17㈡17+18

  答:(略)               两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

  把两个数合并成一个数的运算,叫做加法。   a+b=b+a