分数的基本性质

2023-01-24

分数的基本性质 篇1

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程

  一、导入  新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题(  )里可以填多少个数?第4题呢?

  为什么3、4题(  )里可以填无数个数?

  (  )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数: 

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  七、板书设计 

分数的基本性质 篇2

  分数的基本性质 教学内容:六年制小学数学第十册69页——70页 教学目标 :1、理解分数的基本性质。 2、初步掌握分数的基本性质。 3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。 教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。 设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。 在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。 通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。 在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。 教学过程 : 复习旧知,导入  新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 =) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。——把单位“1”平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考)         新授,探索新知 启发引导,揭示规律  (1) ====   从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的“分数的分子分母都乘以或除以相同的数。”两句话合成一句话来说。——分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的“相同的数”是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。 请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程 中,利用计算机,将各种图形(也就是单位“1”)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标 得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立   几组相等分数的天空练习     (用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师) 3、“请找我的好朋友”练习。(以游戏的形式来进行) 要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。 ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。) 4、判断对错 (1) ==( ) (2) ==( ) (3) ==( ) (4) ==( )       (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。) 5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。 作业  

分数的基本性质 篇3

  教学目标 

  (一)理解和掌握。

  (二)能运用把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握。

  (二)归纳,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程 设计

  (一)复习准备

  1.口答:(投影片)

  根据 120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  请同学观察,思考和讨论。投影出思考题:

  如何?

  结果如何?

  变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

  学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

  的变化规律是什么?(学生小组讨论后汇报)教师板书:

  教师:试说一说这时分子、分母的变化规律?

  学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

  教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

  (3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

  学生口述分数基本性质的内容,老师把板书补充完整。

  教师:这就是,是这节课研究的问题。板书出课题:分数基本性质。

  请学生打开书读两遍。

  教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

  用学生自己的例题说明后,用投影片再说明:

  口答填空:(投影片)

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在( )里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业 

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业 :课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程 中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

  在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

  板书设计 

分数的基本性质 篇4

  教学目的

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

  2.培养学生观察、分析、思考和抽象、概括的能力.

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

  教学过程 

  一、谈话.

  我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

  整数的互化方法.今天我们继续学习分数的有关知识.

  二、导入  新课.

  (一)教学例1.

  出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

  1.分别出示每一个圆,让学生说出表示阴影部分的分数.

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2.观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

  (2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

  3.分析、推导出表示阴影部分的分数的大小也相等:

  (1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

  (这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

  4.观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化?

  ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

  (2)观察

  (二)教学例2.

  出示例2:比较 的大小.

  1.出示图:我们在三条同样的数轴上分别表示这三个分数.

  2.观察数轴上三个点的位置,比较三个分数的大小:

  从数轴上可以看出:

  3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

  (1)这三个分数从形式上看不同,但是它们实质上又都相等.

  (教师板书: )

  (2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质.

  1.观察前面两道例题,你们从中发现了什么变化规律?

  “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

  2.为什么要“零除外”?

  3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

  (板书:“基本性质”)

  4.谁再说一遍什么叫分数的基本性质?

  教师板书字母公式:

  四、应用分数基本性质解决实际问题.

  1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

  (和除法中商不变的性质相类似.)

  (1)商不变的性质是什么?

  (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

  2.分数基本性质的应用:

  我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

  决一些有关分数的问题.

  3.教学例3.

  例3  把 和 化成分母是12而大小不变的分数.

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?

  ( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?

  (这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?

  ( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?

  (这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五、课堂练习.

  1.把下面各分数化成分母是60,而大小不变的分数.

  2.把下面的分数化成分子是1,而大小不变的分数.

  3.在(    )里填上适当的数.

  4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  5.请同学们想出与 相等的分数.

  规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

  六、课堂总结.

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

  七、课后作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  八、板书设计 

分数的基本性质 篇5

  教学内容:(第十册P69-70)

  教学要求:

   1、通过教学,使学生理解和初步掌握

  2、培养学生观察探索、抽象概括的能力和初步的推理能力。

  教学重点:理解并初步运用。

  教学难点 :抽象概括。

  教具准备:投影片,纸条3张。

  教学时间:1课时。

  教学过程 :

  一、复习引入。

  1、复习。

  ⑴根据12÷4=3,口答框里应填几,并说说你填空的根据是什么?

  (12×5)÷(4×5)=□ (12÷2)÷(4÷□ )=4

  am÷bm (板书商不变的性质:a÷b= ) (a÷m)÷(b÷m)

  ⑵分数与除法有什么关系?(接前板书:a÷b= )

  我们曾学过整数除法中商不变的性质,又知道了分数与除法的关系,那么,在分数中是不是也有这样的性质呢?这就是我们这节课要研究的问题。

  2、操作、观察、初步感知。

  ⑴请拿出3张同样大的长方形纸条(已准备好的),将其中的一张用对折的方法等分成4份,把其中的1份涂上颜色(或画上阴影)。

  ⑵再将其中一张用对折的方法平均分成8份,把其中的2份涂上颜色。将最后一张纸条等分成16分,把其中的4份涂上颜色。

  ⑶请把三张纸条的左端对齐平放在桌上,观察比较:涂色(或画阴影)部分面积的大小怎样?没涂颜色部分面积的大小怎样?

  ⑷如果把每张纸条都看作单位"1",那么第一张纸条涂色部分该用哪个分数来表示?第二张呢?第三张呢?这三个分数的大小相等吗?为什么说它们是相等的?(板书: )。

  三张纸条未涂色部份分别该用哪个分数表示,这三个分数的大小相等吗?为什么?(板书: )

  二、学习新课。

  1、探索规律。

  通过同学们动手操作,观察比较,我们知道: 、 、 这三个分数的大小相等。为什么这三个分数的分子、分母都在变化,但它们分数的大小却没有变?其中有什么规律呢?

  ⑴引导学生以 为例,从左往右观察: 是怎样变成 的? 的分子、分母怎样变化才变成 ?

  ( , )

  讨论:一个分数的分子、分母应怎样变化,分数的大小才不变?

  得出:分数的分子、分母都同时乘以一个相同的数,分数的大小不变。

  ⑵引导学生以 为例,从右往左观察: 和 是相等的,那么 是怎样变成 的呢?(根据学生口述,板书: )。

  再观察: 是怎样变成 的?讨论:根据这两例,你知道它们有什么变化规律吗?

  得出:分数的分子、分母都同时除以一个相同的数,分数的大小不变。

  2、概括性质。

  ⑴谁能把前面观察到的规律用一句话概括出来?让我们再看看书上是怎样说的。读教材P70结语。这就是(板书课题)。

  ⑵思考(深化认识):

  a、为什么要说"零除外"?

  b、怎样用整数除法中商不变的性质来说明?

  〔学生回答的同时板书: (m≠0)〕

  三、巩固练习。

  ㈠第一层次:

  1、完成P70第3题(生板演同步),订正。

  2、(幻灯片)不改变分数的大小,把 、 分别化成分母是12的分数,并说说这样做的根据是什么?

  3、(灯片)运用性质进行判断(正确举"√",错误举"×")。

  ⑴ ( )为什么要举"×"?

  ⑵ ( )

  ⑶分数的分子、分母同时乘以或除以一个相同的数,分数的大小不变。( ) 请学生说出第⑶题错在什么地方。

  ㈡第二层次。

  1、选择恰当的分数填空(举出反馈牌)。

  2、把卡片上各分数按要求放入圈内。

  等于 的分数 等于 的分数

  当学生将 、 放入与 相等的圈内时,要让学生说出是怎样想的。并鼓励大家知识学得灵活。同时探究:与 相等的分数(除卡片上的外)还有吗?有多少个?

  四、小结。

分数的基本性质 篇6

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程 

  一、导入  新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书:

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书:

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题(  )里可以填多少个数?第4题呢?

  为什么3、4题(  )里可以填无数个数?

  (  )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数: 

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书:

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  七、板书设计  

分数的基本性质 篇7

  教学目标 

  (一)理解和掌握。

  (二)能运用把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握。

  (二)归纳,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程 设计

  (一)复习准备

  1.口答:(投影片)

  根据 120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  请同学观察,思考和讨论。投影出思考题:

  如何?

  结果如何?

  变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

  学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

  的变化规律是什么?(学生小组讨论后汇报)教师板书:

  教师:试说一说这时分子、分母的变化规律?

  学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

  教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

  (3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

  学生口述分数基本性质的内容,老师把板书补充完整。

  教师:这就是,是这节课研究的问题。板书出课题:分数基本性质。

  请学生打开书读两遍。

  教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

  用学生自己的例题说明后,用投影片再说明:

  口答填空:(投影片)

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在( )里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业 

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业 :课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程 中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

  在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

  板书设计 

分数的基本性质 篇8

  教学目标  :1、理解,并了解它与除法中商不变的规律之间的联系。

  2、理解和掌握。

  3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>

  4、较好实现知识教育与思想教育的有效结合。

  教学重点 :理解和掌握。

  教学难点  :能熟练、灵活地运用。

  教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

  教学过程  : 一、巧设伏笔、导入  新课。

  1、出示课件:120÷30的商是多少?

  被除数和除都扩大3倍,商是多少?

  被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

  2、在下面□里填上合适的数。

  1÷2=(1×5)÷(2×□)

  =(1÷□)÷(2÷4)

  ①想一想,你是根据什么填上面的数的?(生口答)

  (课件:商不变的性质)

  ②商不变的性质是什么?(生口答)

  ③除法与分数之间有什么关系?

  生答,师板书:被除数÷除数=被除数/除数

  二、讨论探究,学习新知。

  1、课件出示:1÷2=           (怎么写)

  ①1/2与(   )相等?你能想出哪些数?有办法怎么让它们相等吗?

  让生合作探讨。

  ②生出示答案:1/2=2/4=4/8……

  有选择填入上数。

  2、引导学生证明它们相等。

  ①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

  (课件演示)

  上述演示让学生感知后,问你发现了什么?(生讨论)

  ②再逆向思考,观察板书和课件。

  问你又发现了什么?(生讨论)

  得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

  3、验证、补充、强调

  ①出示2/5=2×2/5=4/5,对吗?(验证),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

  ②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

  ③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

  ④归纳出上述板书为(课题)。

  4、信息反馈、纠正、巩固。

  ①判断(出示课件)

  A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。

  B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

  C、3/4的分子乘上3,分母除以3,分数的大小不变。

  D、10/24=10÷2/24÷2=10×3/24×3  (    )

  完成后,强调重点,加以巩固。

  ②完成课本108页例2(学生尝试练习)

  强调运用了什么性质?课件:醒目强调。

  三、实践练习,信息综合

  1、练一练

  ①3/5=3×(  )/5×(  )=9/(  )

  ②7/8=(   )/48

  ③4÷18=(  )/(  )=4×5/18×(  )=2/(  )

  2、练习二十二1—3题。

  四、课堂总结、整体感知。

  (在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

  五、发散巩固、自主选择。

  想一想:(选择一道你喜欢的题做)

  课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

  ②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

分数的基本性质 篇9

  教学目的

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

  2.培养学生观察、分析、思考和抽象、概括的能力.

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

  教学过程

  一、谈话.

  我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

  整数的互化方法.今天我们继续学习分数的有关知识.

  二、导入  新课.

  (一)教学例1.

  出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

  1.分别出示每一个圆,让学生说出表示阴影部分的分数.

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2.观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

  (2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

  3.分析、推导出表示阴影部分的分数的大小也相等:

  (1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

  (这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

  4.观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化?

  ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

  (2)观察

  (二)教学例2.

  出示例2:比较 的大小.

  1.出示图:我们在三条同样的数轴上分别表示这三个分数.

  2.观察数轴上三个点的位置,比较三个分数的大小:

  从数轴上可以看出:

  3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

  (1)这三个分数从形式上看不同,但是它们实质上又都相等.

  (教师板书: )

  (2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质.

  1.观察前面两道例题,你们从中发现了什么变化规律?

  “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书

  2.为什么要“零除外”?

  3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

  (板书:“基本性质”)

  4.谁再说一遍什么叫分数的基本性质?

  教师板书字母公式:

  四、应用分数基本性质解决实际问题.

  1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

  (和除法中商不变的性质相类似.)

  (1)商不变的性质是什么?

  (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

  2.分数基本性质的应用:

  我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

  决一些有关分数的问题.

  3.教学例3.

  例3  把 和 化成分母是12而大小不变的分数.

  板书

  教师提问:

  (1) ?为什么?依据什么道理?

  ( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?

  (这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?

  ( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?

  (这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五、课堂练习.

  1.把下面各分数化成分母是60,而大小不变的分数.

  2.把下面的分数化成分子是1,而大小不变的分数.

  3.在(    )里填上适当的数.

  4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  5.请同学们想出与 相等的分数.

  规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

  六、课堂总结.

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

  七、课后作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  八、板书设计

分数的基本性质 篇10

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程 

  一、导入  新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书:

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书:

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题(  )里可以填多少个数?第4题呢?

  为什么3、4题(  )里可以填无数个数?

  (  )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数: 

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书:

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  七、板书设计  

分数的基本性质 篇11

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程

  一、导入  新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题(  )里可以填多少个数?第4题呢?

  为什么3、4题(  )里可以填无数个数?

  (  )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数: 

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  七、板书设计 

分数的基本性质 篇12

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程 

  一、导入  新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书:

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书:

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题(  )里可以填多少个数?第4题呢?

  为什么3、4题(  )里可以填无数个数?

  (  )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数: 

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书:

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  七、板书设计  

分数的基本性质 篇13

  教学目的

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

  2.培养学生观察、分析、思考和抽象、概括的能力.

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

  教学过程 

  一、谈话.

  我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

  整数的互化方法.今天我们继续学习分数的有关知识.

  二、导入  新课.

  (一)教学例1.

  出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

  1.分别出示每一个圆,让学生说出表示阴影部分的分数.

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2.观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

  (2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

  3.分析、推导出表示阴影部分的分数的大小也相等:

  (1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

  (这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

  4.观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化?

  ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

  (2)观察

  (二)教学例2.

  出示例2:比较 的大小.

  1.出示图:我们在三条同样的数轴上分别表示这三个分数.

  2.观察数轴上三个点的位置,比较三个分数的大小:

  从数轴上可以看出:

  3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

  (1)这三个分数从形式上看不同,但是它们实质上又都相等.

  (教师板书: )

  (2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质.

  1.观察前面两道例题,你们从中发现了什么变化规律?

  “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

  2.为什么要“零除外”?

  3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

  (板书:“基本性质”)

  4.谁再说一遍什么叫分数的基本性质?

  教师板书字母公式:

  四、应用分数基本性质解决实际问题.

  1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

  (和除法中商不变的性质相类似.)

  (1)商不变的性质是什么?

  (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

  2.分数基本性质的应用:

  我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

  决一些有关分数的问题.

  3.教学例3.

  例3  把 和 化成分母是12而大小不变的分数.

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?

  ( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?

  (这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?

  ( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?

  (这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五、课堂练习.

  1.把下面各分数化成分母是60,而大小不变的分数.

  2.把下面的分数化成分子是1,而大小不变的分数.

  3.在(    )里填上适当的数.

  4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  5.请同学们想出与 相等的分数.

  规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

  六、课堂总结.

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

  七、课后作业 .

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

  八、板书设计 

分数的基本性质 篇14

  3、分数的基本性质

  第一课时:分数的基本性质

  教学内容:教材第75、76 页例1、例2 ,第76 页“做一做”及第77 页练习十四的第1 一5 题。

  教学目标:

  1 .使学生归初步理解并掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

  2、会运用分数基本性质把不同分母的分数化成分母相同而大小不变的分数。

  3 .培养学生的迁移类推能力、抽象概括能力和观察能力。

  4 .让学生体会到数学知识间的内在联系,感受学习数学知识的价值。

  教学重点:理解分数的基本性质。

  教学难点:归纳分数的基本性质,并运用性质转化分数。

  教具准备:准备3 张同样的长方形纸片。

  教学过程:

  一、导入

  1. 直接口答下面各题的商,说说是怎样想的?根据什么知识?

  120 ÷20 =

  ( 12o×3 )÷(30 ×3 ) =

  ( 120 ÷10 )÷(30 ÷10 ) =

  2、分数与除法有什么联系?

  二、教学实施

  导入:我们曾经学过整数除法中商不变的性质,又知道了分数与除法的联系。那么,在分数中是滞也有与除法同样的性质呢?这节课,我们就要研究这个问题。

  1 .教学教材第75 页的例1 。

  让学生拿3 张同样的长方形纸片,平均分成2 份、4 份、8 份,并分别表示其中的1份、2份、4份,涂上颜色,分别用分数表示涂色部分

  问:把3张纸条的左端对齐,平放在桌上。观察比较,你发现了什么?

  通过动手操作、观察比较,我们知道1/2、2/4、4/8这三个分数的大小相等。这三个分数的分子、分母都不相同,但是它们的大小却完全相同,它们的分子、分母各是按照什么规律变化的呢?学生以小组为单位讨论,请代表发言。

  随着学生汇报,老师板书.

  教材78页第7题。

  观察以上例子,你得出什么结论?(学生讨论,汇报。)

  [板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。]

  提问:这里“相同的数”是不是任何数都可以呢?为什么0要除外?(学生讨论)[补充板书:0除外]

  师:分子和分母如果都乘上0,则分数成为 ,而分数的分母不能为o ;又因为0不能作除数,所以分数的分子和分母也不能同时除以o 。

  提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?

  2.教学例2

  出示列2。问:谁能说一说,在审题过程中要注意什么。(分析要点:① 分母是12 ;② 大小不变。)

  问:想一想,怎样不改变分数大小,使分母变为12 ?应根据什么知识解决这个题的?

  学生试着在课本上填写,集体订正。

  问:在解答中应注意什么问题?

  3 .完成教材第76 页“做一做”。学生独立完成,再集体订正。

  请学生根据分数的基本性质思考并说明思路。

  三、思维训练

  1、完成教材第77 页练习十四的第1 题。

  学生先独立涂色,然后比较大小并说明理由。

  2、完成教材第77 页练习十四的第2 题。

  学生独立完成,说一说是怎样比较的?可以2/5化成4/10,也可以把4/10化成2/5,再比较。

  3 .完成教材第77 页练习十四的第3 题。

  学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。

  4 .完成教材第77 页练习十四的第4 题。

  引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。

  老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。

  5 .完成教材第77 页练习十四的第5 题。

  四、课堂小结

  通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。

  板书设计:分数的基本性质

  例1 1/2=2/4=4/8 例2 2/3=(2*4)/(3*4)=8/12 10/24=(10÷2)/(24÷2)=5/12

  分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

  教学反思

  1、充分利用商不变的性质,促进学习的正迁移。

  商不变的性质和分数的基本性质在内容上,在语言叙述上都有很多相似之处。因此在教学时,我注意利用分数与除法之间的内在联系,帮助学生通过类比来推理得出分数的基本性质,促进了学习的正迁移。

  2、经历由“猜测——动手操作验证——得出规律”的探究过程。

  在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了折纸涂色的操作活动,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。最后在小组合作讨论中得出了正确结论。

  3、提供更多认识材料,便于学生观察理解分数的基本性质。

  教材推导分数的基本性质采用的是不完全归纳法。这种方法是从“特殊”到“一般”推进从而得出结论。因此,在推导过程中要尽可能地让学生更多地占有资料,这样推导出的结论就更具有可靠性。教材只提供了三个分数,如果让学生自己例举些这样的例子又难以通过直观手段来验证,所以我将78页第7题作为补充认识材料加以充分利用。学生通过涂色,填写分数,观察比较再次验证了自己的猜想,也使得结论的得来更科学。