分数的基本性质教学反思

2023-07-24

分数的基本性质教学反思 篇1

  建构主义学习理论认为,学习是获得知识的过程,知识是由学习者在一定的情境下借助其他人(包括教师和同学)、利用必要的学习资料、通过意义建构的方法获得。在这个过程中,学生是信息加工、意义建构的主体,而教师则是意义建构的帮助者和促进者。因此我们在教学过程中要以人本主义为指导,切切实实做到“教为主导,学为主体。”小学数学探究性教学方法就是以目标为依据,以问题为中心,教师引导学生围绕问题主动展开探索,并发挥师生、生生之间的合作关系进行讨论,得出科学的结论,并加以应用的一种教学方法。下面以“分数的基本性质”教学为例,谈谈怎样进行探究学习,促进主体发展。

  一、创设情境,引出问题 

  学生探究学习的积极性、主动性,往往来自于一个对于学习者来讲充满疑问和好奇的情境。创设问题情境,就是在教材内容和学生求知心理之间制造一种“不协调”,把学生引入一种与问题有关的情境的过程。通过问题情境的创设,使学生明确探究目标,给思维以方向,同时产生强烈的探究欲望,给思维以动力。

  二、自主探究,合作交流 

  自主探究和合作交流是小学生学习数学的重要方式。苏霍姆林斯基说过,在人的内心深处都有一种根深 蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。在学生独立思考、自主探索的基础上,组织学生进行合作交流,让学生充分展示自己或正确或错误的思维过程,在合作交流中互相启迪,互相激励,共同发展。

  三、应用拓展,鼓励创新 

  数学知识来源于实际,应用于实际。在师生合作讨论归纳出结论后,可让学生运用理解的知识去解决一些实际问题,巩固加深对新知识的理解,促进学生把新知识纳入到已有的认知结构中去,以利于更好地迁移和运用。练习的设计要有坡度,抓基础、求开放、促发展。使学生感受到学以致用的快乐,体会到学习数学的价值。

分数的基本性质教学反思 篇2

  分数的基本性质教学反思

  “找规律”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的,对这部分内容我是这样设计教学的:这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。最后运用知识,深化对分数的基本性质认识,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  找规律是义务教育课程标准实验教科书第十册第三单元内容,这节课是在学生学习了分数的意义基础上进行教学的,通过观察,合作探究总结出分数的基本性质,本节内容是为以后学习约分和通分打基础,在教学中教师注重“过程与结果的结合”,“合作学习与自主学习”的结合,“创设情境与创新精神”的结合,教学中,教师用生动有趣的故事引入新知,激发学生学习的兴趣,使学生感到学习新知很有兴趣,不枯燥无味。巧妙地创设问题情境,让学生产生迫不及待地要求获取新知识的情感,再通过拓展外延,从具体事例中抽象出事物的内在规律,这一环节重点在掌握了学生的认识规律基础上,强调知识的来源,让学生自己挖掘规律,掌握数学知识产生的内在规律,激发起学生积极思维的动机。通过小组的合作以及教师的引导,发现规律,总结规律,促进了学生相互帮助,相互启迪,相互促进,发挥了讨论交流的作用,提高了学生学习的能力。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知的理解,强化了学生运用新知解决实际问题的能力,使学生形成了一定的技能技巧。

分数的基本性质教学反思 篇3

  下面是关于《分数的基本性质》教学反思,仅供参考!

  在一年一度的实验老师研讨活动中。我选择了《分数的基本性质》为授课内容。《分数的基本性质》是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

  一、迁移引入,沟通新旧知识的联系。

  学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始板书:“2÷3”,然后故作神秘地说“我能变出一个和它的商一样的除法算式,你能吗?”学生纷纷举起了手,变出了一个又一个除法算式。“它还能变。”根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们可以把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

  二、经历由“猜测——动手操作验证——得出规律”的探究过程。

  在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了折纸涂色的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么这里的相同的数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

  三、运用知识,解决实际问题。

  先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?并培养学生运用所学的知识解决实际问题的能力。拓展题2/7的分母加上14,要使分数的大小不变,分子应该加上多少。此题不仅能够帮助学生辨析“分数的分子和分母同时加上或减去相同的数,分数的大小不变”此话的真伪,而且能促使学生更加灵活地运用分数的基本性质。在教学中,学生不仅想到2/7=[2+]/(7+14)=6/21,所以6—2=4的方法,还有部分学生提出更简洁的方法。思路如下:分母加上14,就表示分母增加了7的2倍,扩大到原来的3倍。同理,分子也必须同时增加2倍才能使分子扩大到原来的3倍,从而保持分数值不变,所以分子应该增加2*2=4。创新思维的火花在学生中闪现,体现出他们对知识的掌握更加灵活、对知识的理解更加深刻。

  本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。

分数的基本性质教学反思 篇4

  教学是教师的教和学生的学所组成的一种人类特有的人才培养活动。以下是关于《分数的基本性质》教学反思范文,希望大家喜欢!

  《分数的基本性质》教学反思一

  在一年一度的实验老师研讨活动中。我选择了《分数的基本性质》为授课内容。《分数的基本性质》是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

  一、迁移引入,沟通新旧知识的联系。

  学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始板书:“2÷3”,然后故作神秘地说“我能变出一个和它的商一样的除法算式,你能吗?”学生纷纷举起了手,变出了一个又一个除法算式。“它还能变。”根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们可以把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

  二、经历由“猜测——动手操作验证——得出规律”的探究过程。

  在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了折纸涂色的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么这里的相同的数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

  三、运用知识,解决实际问题。

  先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?并培养学生运用所学的知识解决实际问题的能力。拓展题2/7的分母加上14,要使分数的大小不变,分子应该加上多少。此题不仅能够帮助学生辨析“分数的分子和分母同时加上或减去相同的数,分数的大小不变”此话的真伪,而且能促使学生更加灵活地运用分数的基本性质。在教学中,学生不仅想到2/7=[2+]/(7+14)=6/21,所以6—2=4的方法,还有部分学生提出更简洁的方法。思路如下:分母加上14,就表示分母增加了7的2倍,扩大到原来的3倍。同理,分子也必须同时增加2倍才能使分子扩大到原来的3倍,从而保持分数值不变,所以分子应该增加2*2=4。创新思维的火花在学生中闪现,体现出他们对知识的掌握更加灵活、对知识的理解更加深刻。

  本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。

  《分数的基本性质》教学反思二

  “分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不 变的变规 律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

  2、充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。通过动手操作三张长方形得纸条,把它们平均折成2份、4份、8份,取其中得1份、2份、4份,图上颜色,并用分数表示,来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

  3、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。学完例2以后,马上结合知识点进行反馈练习,加深对这个过程的理解。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  4、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。突破难点。

  本节课出现的不足是:

  (1)猜想的验证过程过于单一,只采用了折长方形纸条的方法来验证,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形、分苹果图等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。

  (2)老师还是有牵着学生走的现象。

  (3)教师语言速度比较快,与平时说话有很大的关系,今后要及时改正,放慢语速。

  (4)在以后的教学中应不断改进教法,向有经验教师学习,加强评价语言的运用,提高驾驭课堂的能力。照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。