六年级数学教案

2023-08-02

六年级数学教案 篇1

  【教学内容】

  负数的初步认识(2)(教材第3页例2)。

  【教学目标

  通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

  【重点难点

  体会引入负数的必要性,初步理解负数的含义。

  【新课讲授

  1.教学例2。

  (1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。

  (3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。

  2.归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

  (2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。

  (3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

  归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。

  【课堂作业

  完成教材第4页的“做一做”第2题。

  【课堂小结

  通过这节课的学习,你有什么收获?

  【课后作业

  完成练习册中本课时的练习。

六年级数学教案 篇2

  教学内容:冀教版《数学》六年级上册第92、93页。

  教学目标:

  1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

  2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

  3、感受数学在解决问题中的价值,培养数学应用意识。

  课前准备:一个蒙古包图片

  教学过程:

  一、问题情境

  1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

  师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

  生:蒙古包。

  师:对,蒙古包。看,老师带来了一张蒙古包的图片。

  图片贴在黑板上。

  师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

  2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

  师:如果要计算蒙古包的占地面积,怎么办?

  生:测量出蒙古包的直径,就能计算出它的占地面积。

  师:对。测量出直径就能求出它的面积。大家来观察这个图片,这个蒙古包的直径好测量吗?

  生:不好测量。

  师:对,从外面没法测量。从里面测量一方面屋子里有东西不好量,另外也不容易测量准确。测量直径不行,还有其它方法吗?

  生:测量出周长。

  师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

  板书:周长18.84米。

  二、解决问题

  1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

  师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

  学生讨论。

  师:谁来说说已知圆的周长是多少,怎样求圆的面积?

  生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

  学生说不完整,教师参与交流。

  师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

  学生独立计算,教师巡视并指导。

  2、交流计算的过程和结果,重点说一说是怎样算的。教师板书出计算的过程。 师:哪位同学说说你是怎么解答的?先算的什么,再算的什么?

  生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)

  学生说的同时,教师板书:

  蒙古包的半径:

  2×3.14×r=25.12

  r=25.12÷6.28

  r=4

  蒙古包的占地面积:

  3.14×42=50.24(平方米)

  如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

  三、课堂练习

  1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

  师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

  学生独立完成,教师个别指导。

  师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

  生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)

  师:看第2题,求花池的面积。自己解答。

  交流时,请学习稍差的学生回答。

  答案:3.14×2×r=18.84

  r=3

  3.14×32=28.26(平方米)

  2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。 师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

  学生完成后,指名汇报。答案:

  3.14×2×r=100.5

  r=16

  3.14×162=803.84(平方厘米)

  3、“练一练”第4题。结合书中的插图,弄清活动要求,然后让学生课下完成。师:读一读第4题.谁知道树的横截面指的是什么?

  生:就是把树锯断后的圆面。

  师:树木的周长相当于这个横截面的什么?

  生:周长。

  师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

  学生读题。

  师:用同样长的铁丝,分别围成一个正方形和一个圆。围成的图形哪个面积大?就这个问题,谁想发表一下自己的意见?

  学生可能出现不同意见,都不做评价。

  四、问题讨论

  1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

  师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

  学生合作研究,教师参与指导。

  2、全班交流,重点说一说思考的过程和举例计算的结果。使学生认识到周长相同的平面图形中,圆的面积最大。 师:谁来说一说你们假设铁丝的长度是多少,计算的结果是什么?

  学生可能出现不同的假设。如:(1)假设铁丝长1米。

  正方形的边长:1÷4=0.25=25(厘米)

  正方形面积:25×25=625(平方厘米)

  圆半径:100÷2÷3.14≈16(厘米)

  圆面积:3.14×162≈803(平方厘米)

  结论:圆的面积大

  (2)假设铁丝长2米。

  正方形的边长:2÷4=0.5=50(厘米)

  正方形面积:50×50=2500(平方厘米)

  圆半径:200÷2÷3.14≈32(厘米)

  圆面积:3.14×322≈3215(平方厘米)

  结论:圆的面积大

  (3)假设铁丝长4米。

  正方形的边长:4÷4=1(米)

  正方形面积:1×1=1(平方米)

  圆半径:4÷2÷3.14≈0.64(米)

  圆面积:3.14×0.642≈1.29(平方米)

  结论:圆的面积大

  3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

  师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

  生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

六年级数学教案 篇3

  学材分析

  已经学了比、除法、分数之间的关系,再来学会化简比的方法。

  学情分析

  根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。重点理解比的基本性质。难点正确应用比的基本性质化简比。

  学习目标

  1、理解比的基本性质。2、正确应用比的基本性质化简比。3、培养学生的抽象概括能力,渗透转化的数学思想。

  导学策略

  引导学生发现比的基本性质。

  教学准备

  习题准备

  老师活动:

  一、复习引入

  (一)复习商不变的性质

  1.谁能直接说出6025的商?

  2.你是怎么想的?

  3.根据是什么?

  (二)复习分数的基本性质

  根据是什么?内容是什么?

  (三)求比值

  二、讲授新课

  我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

  (一)比的基本性质

  1、出示8∶4和2∶1这两个比。

  2.教师提问

  这两个比有什么共同点吗?

  这两个比有什么不同点吗?你是怎么想的?

  (1)教师板书:比的前项和后项同时

  乘以或者同时除以相同的数(0除外),比值不变.

  板书课题:比的基本性质

  (2)教师强调:同时相同0除外几个关键词

  (二)化简比

  1.练习引入

  学校有8个篮球,12个排球,篮球和排球个数的比是多少?

  (1)篮球和排球的个数比是8∶12

  (2)篮球和排球的个数比是2∶3

  讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

  2.最简单的整数比

  最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

  3.化简比

  例1.把下面各比化成最简单的整数比.(1)14∶21=(147)∶(217)=2∶3讨论:化简整数比的方法是什么?

  (2)∶=(18)∶(18)=3∶4

  (3)1.25∶2=(1.25100)∶(2100)=125∶200=5∶8

  1.25∶2=(1.254)∶(24)=5∶8(更好)

  讨论:怎样把小数比化成最简单的整数比?

  4.小结化简比的方法

  (1)都化成整数比

  (2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

  (三)区别化简比和求比值

  1.练习

  化简比:化成最简单的整数比

  比值:求出商。

  25∶100

  4.2∶1.4

  例如:25∶100化简比的结果是,读作1比4,求比值的结果是,读作四分之

  三、巩固练习

  (一)化简比

  (二)选择

  (三)思考题

  六一班男生人数是女生的1.2倍,男、女生人数的比是,男生和全班人数的比是,女生和全班人数的比是.四、课堂小结通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?

  四、课堂作业:《伴你成长》

  学生活动;

  口答。

  约分:

  通分:

  3∶28∶47∶2127∶95∶2516∶424∶52∶1

  (比值都相等)

  (前项和后项都不同)

  我们可以说8∶4和2∶1相等吗?

  (1)根据比与除法的关系(商不变的性质)

  8∶4=84=(84)(44)=21=2∶1

  (2)根据比与分数的关系(分数基本性质)

  8∶4=2∶1

  3.学生尝试概括比的基本性质(演示比的基本性质)

  讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

  2.讨论:化简比和求比值的区别是什么?

  区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

  6∶10∶0.3∶0.4

  12∶21∶20.25∶1

  1.1千米∶20千米=

  (1)1∶20(2)1000∶20(3)5∶1

  2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是

  (1)20∶21(2)21∶20(3)7∶10

  教学反思:化简比中小数与小数的比学生掌握的不够。

六年级数学教案 篇4

  教学内容:期初复习第1012题。

  教学目标:进一步巩固对长度单位和重量单位的认识,学会分析应用题,掌握应用题的数量关系。

  教学重、难点:掌握并学会分析应用题的数量关系。

  教具准备:小黑板、投影片。

  教学过程

  一、复习角

  1、出示活动角。

  学生说一说这是什么?

  同桌互相介绍角的各部分名称。

  2、提问:哪些物体的表面有角?

  3、出示直角,提问:这是什么角?哪些物体的表面有角?

  4、第5题

  学生用三角尺比一比,图中有几个直角?

  学生说一说比角的方法。

  5、回忆画角的方法,学生任意画一个角。学生评价。

  6、比一比

  学生猜一猜哪个角大?怎样比较?你发现了什么?

  一、复习长度单位、重量单位、时间单位

  1、学生互说学习了哪些长度单位?重量单位呢?时间单位呢?

  2、提问:它们之间有怎样的关系?

  3、出示:

  6米=厘米=( )分米

  80厘米=( )分米

  3000克=( )千克

  5千克=( )克

  60秒=( )分

  1时=( )分

六年级数学教案 篇5

  教学内容:

  统计天地

  教学目标:

  1、使学生进一步掌握用分数(或百分数)表示简单事件发生的可能性的方法。

  2、使学生会根据事件发生可能性的大小要求设计相应的活动方案

  教学过程:

  一、提问:

  问:我们在学习可能性的知识时,怎样用分数来表示可能性的大小呢?你们能举例说说吗?

  我们还会根据事件发生可能性大小的要求设计活动方案,对此,你有什么体会?

  二、完成第25题

  读题,理解题意。

  可演示主持人两次抽奖的过程,使学生明白:

  第(1)题 用4种不同颜色的彩纸表示4种不同颜色的座位票,演示从中抽出一种颜色的座位票,启发学生思考每个同学获得开心奖的可能性。

  第(2)题 用10张红色彩纸表示10张红色座位票,按1~10编号后,演示从中抽出一个编号的座位票,启发学生思考拿红色票的同学获得幸运奖的可能性。

  三、完成第26题

  出示题目,读题

  问:要使落下后红色面朝上的可能性是 1/3,必须有几个面涂上红色?有几种涂的方法?

  要使落下后数字2朝上的可能性是5/6 ,必须有几个面写上2字?有几种写法?

  在交流中使学生认识到:

  符合要求的涂色或写数方法不是唯一的,但第(1)题必须有2个面涂成红色,第(2)题必须有5个面写2。

六年级数学教案 篇6

  教学内容

  教科书第63页的内容,练习十四1,3,4,5,6,9,10题。

  教学目标

  1.让学生参与系统、全面整理知识的过程,梳理本单元的所学知识,引导学生沟通知识间的联系,构建知识网络。

  2.通过本单元知识的复习,比较熟练掌握比例知识,并能解决一些实际问题。

  3.培养学生自主归纳、整理知识的兴趣和能力。

  教学重点

  整理本单元知识,沟通知识间的联系。

  教学难点

  能灵活运用正、反比例的意义,解决实际问题。

  学生准备

  回家先整理本单元知识,作好交流的准备。

  教师准备

  视频展示台。

  教学过程

  一、谈话引入,揭示课题

  教师:我们已学完了本单元知识,今天来进行整理与复习。

  板书课题:整理与复习

  二、梳理单元知识,形成知识网络

  1.方法回顾

  (1)以前我们是怎样整理单元知识的?

  (2)你们昨天回家是这样整理的吗?

  (3)四人小组进行交流。

  2.学生汇报交流

  (1)抽2位汇报整理结果(投影标出)。

  (2)根据学生的整理,大家提出建议并进行修改。

  (3)展示教师整理的结果,说出整理思路(展示)。

  比例意义、基本性质、解比例

  正比例意义[x/y=k(一定)]

  应用

  反比例意义[xy=k(一定)]

  应用

  3.教师小结整理知识的情况

  三、复习本单元知识

  1.完成练习十四第1题

  这两面国旗的长和宽的比,是否可以组成比例?

  如果可以组成比例,把组成的比例写出来,并指出这个比例的内项和外项(生齐练)。

  教师:通过前面两个题的复习,你能说说什么叫做比?什么叫做比例?比和比例有什么区别?

  在这里使学生明白比表示两个数,有两项;比例表示两个比相等,有四项。

  (2)完成练习十四第3题。

  教师:什么叫做解比例?

  学生在练习本上练习,指名板演,学生练习后讲评。

  2.正、反比例关系的判断

  (1)判断下面各题中两种量是否成比例。如果成比例,成什么比例?

  ①正方形的边长与周长。

  ②行驶一段路程,车轮的直径与车轮转过的转数。

  ③y=5x,y和x。

  ④yx=24,y和x。

  (2)说出下列各组中的三种量在什么条件下能组成什么比例关系。

  ①速度,时间,路程。

  ②汽车每次运货吨数,运货的次数和运货的总吨数。

  ③三角形的底、高和面积。

  (3)说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?

  梳理判断两种量是否成正(反)比例的思考步骤。

  ①先找出两种相关联的量和一个定量。

  ②根据两种相关联的量之间的数量关系,列出关系。

  ③根据正、反比例的意义,判断比例关系。

  (4)用比例知识解决下面的问题(练习十四第6题)。

  ①学校举行方阵团体操表演,排成5列需要90人,排成24列,需要多少人?

  ②学校举行方阵团体操表演,如果每列16人,要排27列,如果每列18人,要排多少列?

  教师:说一说,用比例知识解答应用题的关键是什么?解题的步骤有哪些?注意什么问题?

  学生1:设所求问题为x。

  学生2:判断题中的两个相关联的量是否成比例关系及成什么比例关系。

  学生3:列出比例式。

  学生4:解比例,验算,写答语。

  教师:用比例知识解答应用题的关键是正确判断题中两种相关联的量成什么比例关系,所以解题时要认真审题,做出正确判断。

  四、拓展应用练习

  (1)指导学生完成练习十四第9题。

  学生独立完成,教师巡视,集体评议。

  教师:航程和相对应的飞行时间的比值表示什么?成什么比例?为什么?

  教师:用图像把它们的变化规律表示出来。

  教师:观察图像有什么特点?

  使学生认识到:图像是一条直线。从这个图像可以直观看到航程和相对应的飞行时间的变化情况,航程增加,所需飞行时间也随着增加,航程减少,所需飞行时间也随着减少。

  教师:观察图像,估计飞行2 000千米需要多少时间?

  教师:根据图像估一下,7时大约飞行多少千米?

  学生回答,教师可以通过课件同步显示。

  (2)完成练习十四第10题。

  五、全课小结,评价

  今天我们一起进行了正、反比例这一单元的整理与复习,你有什么收获?还有哪些不明白的?

六年级数学教案 篇7

  教学要求:

  1.使学生掌握工程问题的特点和解答方法,并能解答有关的简单实际问题。

  2.培养学生分析解答应用题的能力,及迁移类推触类旁通的能力。

  教学重点:

  使学生掌握工程问题的特点和解题方法。

  教学难点:

  工作总量用单位1表示及工作效率所表示的含意。

  教学手段:

  多媒体

  教学过程:

  一.设计情境,复习铺垫:

  1.谈话:同学们,你发现最近我们南雄城发生了哪些变化?

  生答:略

  师:如果我们要把新建沿江路人行道两边进行绿化。

  ①这项工程计划15天完成,平均每天完成几分之几?

  ②如果这项工程每天完成 ,几天可以完成全部工程?

  2、导入新课:在日常生活中,像搞绿化、修马路、盖房屋、造桥、运货等各种工作,统称为工程,今天我们就一起来研究工程问题。

  二.尝试探究、探讨新知:

  1.谈话:如果我们将新建路两旁的绿化工程进行招标,应聘单位有三个,他们都承诺能保质保量完成任务,但甲工程队单独完成需10天,乙工程队单独完成需15天,丙工程队单独完成需18天。请问:

  ①你选择哪个队施工?为什么?

  ②为了加快工程完成速度,又该做怎样的选择?

  2.(投影)出示例题,进行研讨。

  (1)要绿化30公顷土地,甲队单独完成要10天,乙队单独完成要15天,两队合作,几天可以完成?

  要求:①学生独立完成。

  ②分析题意:明确:3010 、 3015与(3010+3015)各求出的是什么?怎样求合作时间?

  (2)把30公顷改为10公顷、1公顷。这时分别怎样求合作时间?学生独立完成,并汇报。

  板书: 30(3010+3015)=6天

  10(1010+1015)=6天

  1(110+115)=6天

  问:通过这三个算式,你发现了什么?(工作总量在变化可用的时间都一样)

  怎样求出合作时间呢?

  板书:工作总量效率和=合作时间

  为什么绿化面积加大了,可用的时间却都一样呢?

  (3)(出示去掉具体绿化面积是多少的题目)

  通过读题看看现在这道题与前面三道题有什么不同?

  ①、学生独立解答,相互交流。

  ②、弄清:表示什么?表示什么?

  又表示什么?要求合作时间,为什么要用1( + )?

  讨论:已知条件中去掉了具体的数量也能求出问题,这种做法与前面具体的数量计算结果的方法比较,有什么相同的地方与不同的地方?

  不同:一是具体的工作总量,另一题是没有具体的工作总量,而是用单位1表示。

  相同:解题的思路是一致的,数量关系也相同,合作时间=工作总量工作效率和。

  把全部工作量看作单位1是工程问题的特点,这个1可代表一项工程,一块地,一堆煤,一段路程等等。

  再看一看:为什么绿化面积水逐渐加大,可用的时间却都一样呢?

  明确:工作总量虽然变化了,但每天完成工作量的几分之几没有变。把工作量30公顷、45公顷、60公顷都可以看作单位1,这三个算式实际就是例题的后一种形式,所以工作时间不变。

  三、综合应用、巩固提高:

  (1)为了加快工程速度,三个工程队一起完成这项工程需几天?

  (2)根据上面给出的情境,绿化工程,甲队单独完成需10天,乙队单独完成需10天,丙队单独完成需18天。

  大家提问,共同解答。

  ①甲乙合做几天完成全工程的一半?

  ②甲乙合做几天后,还剩全工程的 ?

  ③甲乙合做2天后,剩下的丙队来完成还需几天?

  ④甲、乙、丙合做3天后,还剩全部工程的几分之几?

  4、看书质疑。

  三、全课总结:

  这节课我们共同研究了工程问题这类应用题,了解了工程问题的特点及解题思路和方法,同时解决了我们生活中的问题。同学们通过学习还有什么新的想法和见解。

  四、课外实践:

  编题练习:

  五、回归评价:

  希望同学们能够用我们所学的知识解决生活中的实际问题,把我们南雄建设得更加美好

六年级数学教案 篇8

  教学要求:

  1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。

  2. 培养学生对看到的、听到的事物进行了深入理解和准确把握。

  3. 观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。

  教学重点:

  培养学生的对看到的、听到的事物进行了深入理解和准确把握。

  教学难点:

  开拓学生是思维能力。

  教学过程:

  一、导入新课:

  要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。愿这一节课能使你的头脑更灵活。

  二、知识新授与应用

  1.课件出示:一组有趣的图片

  图1:柱子是圆的还是方的?仔细看一看。

  让学生先同桌互相说一说,看到了什么?

  图2:看着黑点身体前后移动。

  让学生跟着要求做,然后说一说看到的。

  图3:有多少个黑点?

  图4:是静的还是动的?

  图5:“弗雷泽螺旋”是最有影响的幻觉图形。

  你所看到的好像是个螺旋,但其实它是一系列完好的同心圆!这幅图形如此巧妙,以至于会促使你的手指沿着错误的方向追寻它的轨迹

  教师介绍学生认识。

  2、练习。

  三、回顾小结:

  学生谈收获。

六年级数学教案 篇9

  如何突破分数乘分数这个难点?

  分数乘法的计算法则和分数乘法的意义是分数乘除法的基础,也是整个六年级应用题学习的基础和关键。而在人教版第5页的例3中,它是从分数乘分数的意义着手进行理解和分析,在经过繁杂的把单位1按分数意义平分再平分,还要借助画图让学生发现其实就是把单位1平均分成十份,而这个十份就是把分母相乘而得来的。法则的证明过程对于小学生来说非常的复杂的。纵观教材的编排思路与意图,它是按照成人的思维能力从最正统的思路按部就班着手进行分析与解释,它忽略了这个年龄段的大多数学生的接受能力。

  有没有学生比较容易理解而又不难得出分数计算法则的方法?其实在学生学习分数乘法的过程中,特别是分数乘法的计算法则的学习,到了后面的计算对于学生来说记得的只是它的计算法则了,我们大可以撇开分数乘法的意义,换个角度去进行思考。大家都知道学生在五年级时学过分数化小数的知识,不妨在这节里拿出来用用,从小数乘法着手进行推导,学生会很快接受和掌握。

  可以这样进行,先讲例3,把例3里的分数改成可以化成有限小数的分数,如

  一、列式(要求只列式)

  1、一台拖拉机每小时耕地3/5公顷,3小时可耕地多少公顷?

  学生列式:3/5*3=?

  2、一台拖拉机每小时耕地3/5公顷,3/4小时可耕地多少公顷?

  引导学生想数量关系:

  每小时耕地的公顷数*小时数=一共可耕地的公顷数

  列式:3/5*3/4=

  二、探讨怎么算,初步感知

  1、让学生尝试计算并自由发言自己的想法

  师生齐小结:3/5*3表示有3个3/5相加即

  3/5+3/5+3/5=3*3/5=9/5(公顷)

  2、而3/5*3/4则可以化成小数进行计算

  3/5*3/4=0.6*0.75=0.45即

  3/5*3/4==9/20(把小数的结果化成分数)

  让学生猜猜,中间的计算过程是可以怎样填写

  补充完整:3/5*3/4=3*3/5*4=9/20

  三、进行验证:

  1、老师出题:1/2*1/5=?5/8*1/4=

  学生尝试完成并板书:1/2*1/5=1*1/2*5=1/10

  5/8*1/4=5*1/8*4=5/32(这道题稍繁杂)

  2、进行总结:你发现分数乘分数的计算方法可以怎样算?

  通过对以上式子的观察从而得出结论:分数乘分数用分子相乘的积作分子,用分母相乘的积作分母。

  3、教学如何用以上的法则去学习分数乘整数

  如例题中的3/5*3,其实也可以用以上法则进行计算

  过程如下:3/5*3=3/5*3/1=3*3/5*1=9/5

  把整数3化成分数形式3/1就可以用以上法则进行计算了

  4、出两道不能化成有限小数的分数乘法

  如:3/9*2/7=

  让学生用两种方法去做,

  第一种方法:是把分数化成小数(保留两位小数)

  3/9*2/7=033*0286=009438

  第二种方法:是用分数乘法的法则去做

  3/9*2/7=3*2/9*7=6/63=00952

  四、教学先约分再乘的方法

  这样进行教学虽然有其局限性,如分类数的选择就有讲究,必须是能化成有限小数的,二是化成小数然后再化成分数这个过程不是每个小数化分数都很容易。故而这样的分数也不是很随意的能找到,而对于不能化成有限小数的分数乘法就很难用这样的方法去进行有效的验证,当然这里使用的是不完全归纳法,举一知十进行推理,从而得出计算法则。这样做的基础是从学生最近发展区出发,从学生最容易接受的旧知出发正向迁移至新的知识中去。这是可行的。

六年级数学教案 篇10

  稍复杂的分数除法应用题

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题

  题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新知探究

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:

  买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。

  解:设买来大米X千克。

  x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

  (3)学生试画出线段图。

  (4)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (5)根据等量关系式解答问题。

  (6)解:设航模小组有χ人。

  χ+χ=25

  (1+)χ=25

  χ=25÷

  χ=20

  答:航模小组有20人。

  三、课堂小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、当堂测评

  练习十第4、12、14题。

  学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

  设计意图:

  继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

  教学后记

六年级数学教案 篇11

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第2~3页。

  【教学目标】

  1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用数对确定位置。

  2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

  3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用数对确定位置。

  【教学过程】

  一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置

  1.谈话引入。

  今天有这么多老师和我们一起上课,同学们欢迎吗?

  老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?

  2.合作交流,在已有经验的基础上探究新知。

  (1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

  汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排

  哪个小组也用语言描述出了班长的位置?

  请班长起立,他们的描述准确吗?

  刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排)

  看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

  板书:列行

  老师左手起第一组就是第一列,横排就是第一行

  班长的位置在第4列、第3行。

  还有其他的表示方法吗?

  画图的`方法:

  如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)

  把座位图转过来,班长的位置变了吗?为什么?

  (没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)

  (2)探究新知。

  在这张座位图中,你能找到自己的位置吗?

  师指图:这是谁的位置?(我的,我的位置在第五列,第4个)

  指名描述自己的位置?

  同桌说说自己的位置。

  今天老师还要教你们一种更为简洁的方法来确定位置,想知道吗?

  板书:(2,5)

  你们知道,这是谁的位置吗?

  2,5分别表示什么意思?像这样用两个数来表示位置,我们称它们为数对。(板书)

  下面我们就来研究用数对的方法来确定位置。(板书)

  (3)巩固新知。

  A、谁能用数对表示出自己的位置?指名两个,说出数对的含义,板书出来。

  老师板书:(5,2),请这个同学起立,回答问题:(2,5)(5,2)这两个数对都由数字2、5组成,他们表示的位置一样吗?为什么

  (两个数字组成顺序不一样,表示的意思就不一样)

  B、老师出示图中的点,相应的学生说数对,其他同学判断对错。

  (1,5)(4,2)(3,3)

  当出示(3,3)时,问:两个3的意思一样吗?

  在我们班的位置中,这样的数对还有吗?

  如果有个班级最后一个同学的位置是(7,7),你知道这个班有多少人吗?为什么?

  (49个,因为表示有7列,7行,所以77=49人)

  C、小游戏:接龙。

  老师先说出一组数对,相应的同学起立,说出下一个同学的位置,以此类推。

  先让学生在心中想好你想叫得同学的位置。

  D、寻找新位置。

  同学们都会用数对表示自己的位置了吗?下面这个环节要检验你们每一个同学是否真的会了。

  收拾好你的东西,根据你手中的数对,快速找到你的新位置。

  (学生的数对里有两个特殊设计:(3,)和(,3)

  二、通过多种练习,使学生会在方格纸上用数对确定位置

  1.出示动物园示意图。

  你能看懂这张图吗?图上的数字表示什么意思?

  请你用数对说出飞禽馆和南门的位置。

  请你写出狮虎山,猴山,大象馆的位置。

  观察这三个地点在图中的位置和他们的数对,你有什么发现?

  周六,小红和妈妈去动物园玩,她们的游玩路线如下

  请你说出她们的参观路线。

  请你设计一条路线:

  (1)从南门进,从北门出。

  (2)经过所有的景点。

  (3)不走重复路线。

  用数对写出路线方案。

  2.老师的礼物。

  老师相送给每位同学一份礼物,但是只有掌握了今天所学的知识的同学才能看到这份礼物。

  学生按照数对涂色。

  介绍经验:这么多数对,你是怎么做到不丢不重,又准确的找到位置的。

  看来这些同学取得成功时有方法的,老师真心祝贺你们,没有成功的同学也别气馁,老师把信心送给你们,只要吸取好的经验,下次一定会成功。

  思考:在这幅图中,数对确定位置的方法和之前有什么相同和不同?

  (方法一样,一组数对表示一个方格,而不是一个点)

  3.第5页第4题第(2)小题:描出下列各点并按字母顺序依次连成封闭图形,看看是什么图形。

  这道题的构图方式和刚才的心行构图有什么不同?

  三、生活中的数学

  用数对确定位置,在生活中应用广泛,你能举出例子吗?

  教师出示:地图、围棋图

  四、小结

  五、小小设计师

  以小组为单位,任选构图方式,用数对确定位置,设计一个图案。把设计方案和效果图都记录在图表纸上。

六年级数学教案 篇12

  教学目的

  1、使学生初步了解归总应用题的基本结构和数量关系,能够正确地解答这种应用题。

  2、进一步提高学生分析问题和解决实际问题的能力。

  教学重点

  使学生掌握乘、除应用题的数量关系,结构特征和解答方法。

  教学难点

  学画线段图,并借助线段图分析题中数量关系。

  教具准备

  投影片或教学课件。

  教学过程

  一、自主探索、领悟方法

  1、学习例5(为了贴近学生生活,便于学生理解、计算,将例题进行了改编)。

  (1)教师说:小华读一本书,如果每天读9页,几天可以读完?(学生各抒已见)。

  (2)教师根据学生的回答告诉他们:知道每天读12页,6天可以读完。现在你能解决这个问题了吗?

  (3)小组展开讨论,并独立列式试做。(教师注意巡视,及时发现学生出现的问题。)

  (4)小组汇报自己的想法,教师点拨,小组间相互质疑问难。

  (5)教师根据小组的汇报情况,边小结边进行必要的板书:

  先求这本书一共多少页?126=72(页)

  再求几天能读完?729=8(天)

  (6)让学生根据分步算式,独立列出综合算式。

  2、改编例题,引出题目:(如果小华8天读完,他每天读几页?)

  (1)学生独立思考,并试着列式解答出来。

  (2)请一名学生汇报。通过学生之间的质疑问难,教师根据出现的情况,及时进行小结:要求每天读几页?首先知道这本书一共有多少页?遇到问题,一定要分析清楚先求什么、再求什么。

  (3)学生独立列出综合算式。

  3、比较例题和改编的问题有什么相同点和不同点?

  让学生说一说自己的想法,教师根据学生的回答,小结。相同点:都是先求这本书的总页数。不同点:例题是求几天读完,改编后的问题是求每天读几页。

  4、教科书第112页做一做的第2题和例5,让学生独立完成。

  二、应用知识,解决问题

  1、做练习二十五的第1题。

  让学生认真读题,独立完成,并找出两个小题的异同点。

  2、教师:小林从家往学校走,每分走100米,需要用8分走到学校。如果每分走80米,你知道需要用几分走到吗?

  让学生说一说想法,然后独立列式解答。

  3、做练习二十五的第3、4题。

  让学生独立列式解答。做完后,集体订正。

  三、课堂小结

  通过师生交流,突出两步应用题的数量关系。

  板书设计:

  两步应用题

  (1)先求这本书一共多少页?(2)先求这本书一共多少页?

  126=72(页)126=72(页)

  再求几天能读完?再求每天读几页?

  729=8(天)728=9(页)

  答:8天可以读完。答:每天读9页。

六年级数学教案 篇13

  学习目标:

  1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

  2、让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的过程。

  3、养成细致的观察习惯和一定的空间想像能力。

  教学重点:

  理解掌握圆柱的特征。

  教学难点:

  1、建立空间观念

  2、弄清圆柱侧面展开式一个长方形或正方形,长方形的长和宽与圆柱的底面周长和高的关系。

  教具准备:

  PPT,剪刀,圆柱模型

  教学过程

  整体感知圆柱

  教师:同学们我们学过的立体图形有哪些呢?

  学生:长方体和正方体

  教师出示:岗亭等,你们还见过这样的物体吗?形如这样的物体在生活中你能举几个吗?

  学生:圆形的柱子、罐头等

  教师:你们举得这些物体都有哪些共同的特点呢?

  直直的、圆的、上下一样粗细

  教师:这节课我们就一起来研究直直的、圆的、上下一样粗细的物体。我们把这样的物体叫做圆柱。

  板书:圆柱的认识

  一、认识圆柱各部分(摸一摸)

  1、教师:同学们,谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。

  学生:美观、实用、安全、可滚动

  2、教师:请各个小组拿出你们桌上的圆柱体,摸一摸说说发现了什么?

  各小组交流汇报,教师补充

  学生:有3个面

  教师:用手平摸上下两个面,有什么特点呢?

  学生:它们是完全相同的两个圆。上下两个面叫做圆柱的底面。

  教师:其他组还有补充的吗?

  同学们看看这两个底面的大小怎样?你有什么办法证明呢?

  学生:量一量直径,把两个底面剪下来比一比

  教师:看看这个侧面有什么特点呢?

  学生:它是一个弯曲的,光滑的面。

  教师:我们这个弯曲的,光滑的面叫做圆柱的侧面。

  教师补充:圆柱有两个完全相同的底面,一个侧面(是曲面)

  2.圆柱高的含义。(量一量)

  教师:请各个小组量一量,找一找圆柱的高在哪里吗?(学生指)

  教师划一条侧面上的斜线,这是圆柱的高吗?为什么?

  两个底面圆心的连线是高吗?高有多少条?

  学生:两个底面之间的距离处处相等,也就是说圆柱有无数条高。

  教师补充:圆柱两个底面之间的距离叫做圆柱的高。圆柱有无数条高。圆柱的高矮与圆柱两个底面之间的距离有关。

  课堂练习(课件出示)

  1、指出图形中哪些是圆柱?

  2、指出圆柱的底面、侧面和高。

  二、圆柱的侧面展开(例2) (剪一剪)

  1、教师:想不想知道圆柱的侧面展开后是什么形状呢?

  学生:想知道

  动手操作:教师:请各小组小组拿出有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

  学生大胆猜想:不同的剪法会有哪些形状呢?

  各小组分别发言

  (1)沿着高剪开,(长方形)

  (2)斜斜的剪开,(平行四边形)

  (3)随意乱剪开,(不规则的图形)

  教师指出:①讨论:平行四边形能否通过什么方法转化成长方形?

  ③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

  学生:当圆柱的底面圆的周长等于圆柱的高时,圆柱的侧面展开图就是一个正方形。

  教师小结:圆柱的侧面沿着高剪开是一个长方形(或正方形),斜斜的剪开是一个平行四边形,随意乱剪开是一个不规则的图形。

  三、寻求发现.圆柱侧面展开后的长方形的长和宽与圆柱的关系.(操作概括)

  教师:长方形的长和宽分别与这个圆柱的什么有关?

  学生:长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。

  1、教师:

  ①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  ②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

  ③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高

  教师补充:圆柱的侧面展开后是一个长方形,这个长方形的长就是这个底面圆的周长,宽就是圆柱的高。

  四、巩固练习

  1、判断

  (1)圆柱的高只有一条。( )

  (2)圆柱的两个底面的直径相等。( )

  (3)圆柱体底面周长相等和高相等时,沿着它的一条高剪开,侧面是一个正方形。( )

  2、填空

  1、 一个圆柱的侧面展开后得到一个长方形,这个圆柱的底面周长是9厘米,高是5厘米,则长方形的长是( )厘米,宽是( )厘米。

  2、一个圆柱的侧面展开后得到一个长方形,圆柱的底面半径是2厘米,高是3厘米,则长方形的长是( )厘米。

  3、一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。这个圆柱的底面直径是( )厘米,高是( )厘米。

  五、课堂小结

  今天这节课你学到了哪些知识?圆柱体有哪些特征?

  六、实践作业

  用硬纸做一个圆柱,量出它的底面直径和高各是多少厘米?

六年级数学教案 篇14

  教材分析:本单元的主要内容是确定位置,它包含运用两个数据确定位置的方法和利用方格纸确定物体位置的方法。本单元内容是在学生学习了运用“上”、“下”、“前”、“后”、“左”、“右”以及“第几排第几座”等方式描述物体所在的平面位置基础上进行教学的。让学生在探索知识的过程中发展空间观念。

  教学内容:

  本课是新课标人教版小学数学六年级上册教材第一单元的内容《确定物体位置的方法》(教材2~3页的例1、例2,练习一1~5题)

  教学目标:

  1、知识与技能

  (1)使学生学会在具体情境中探索确定位置的方法,懂得可以用两个数据确定物体的位置。

  (2)使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。

  2、过程与方法

  (1)经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。

  (2)通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

  3、情感态度与价值观

  使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。

  教学重点:

  能用数对表示物体的位置。

  教学难点:

  能用数对表示物体的位置,正确区分列和行的顺序。

  教学准备:

  课件

  教学过程:

  一、创设生活情境:

  教师:我们全班有40名同学,如果我要请你们当中的某一位同学发言,不叫出你们的名字,你们能帮我想想要如何表示才能既简单又准确吗?

  学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  今天继续在前面学习过前后左右的基础上学习《位置》。

  二、探究新知:

  1、教学例1

  (1)谁能描述出-同学具体坐的位置?

  有的学生用以前学过的前后左右的方法描述同学的位置,也有的同学用第几行第几列或第几列第几行来表述。老师都给予肯定。

  如果老师用第3列第4行来表示-同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)先指名说说,然后同桌互相提问互相说。可以采用不同的问法来练习。同学互相评价。

  (3)教师教学写法:-同学的位置在第3列第4行,我们可以这样表示:(3,4)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答),同学互相评价。

  2、师生小结例1:

  (1)刚才大家确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。(让学生体会位置的相对性。)

  3、巩固练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)指名说出同学的名字,其他同学在本子上写出准确位置并集体订正。

  (3)同座位互相说某同学名字,对方写出位置;或说出某一位置,让同学说出是哪位同学?

  (4)发散思维:生活中还有哪些时候需要确定位置,说说它们确定位置的方法。

  4、教学例2

  (1)教师:我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)让生依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

  小结:在图上表示各物体的位置时,要注意明确行和列,先说列再说行。

  三、课堂练习:

  1、练习一第4题

  ⑴学生独立找出图中的字母所在的位置,指名回答。

  ⑵学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、练习一第6题

  ⑴独立写出图上各顶点的位置。

  ⑵顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

  ⑶点A的方法平移点B和点C,得出平移后完整的三角形。

  ⑷观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  学生自由表达,自由评价。教师最后总结。

  五、作业

  练习一第1、2、5、7、8题。

  板书设计:

  位置

  例1:第3列第4行(3,4)

  例2:图略

六年级数学教案 篇15

  教材分析:

  在学习本单元的内容之前,学生已经在第一、二学段学习了前后、上下、左右等表示物体具体位置的知识,也学习了简单的路线等知识。这些知识为学生进一步认识物体在空间的具体位置打下了基础。而本单元的学习则是第一、二学段学习内容的发展,它对提高学生的空间观念,认识生活周围的环境,都有较大的作用。

  教材从学生自己十分熟悉的座位表着手,通过说一说张亮的座位,引出第几组与第几个的话题。接着,再从第几组第几个引出抽象的数对表示方法。这一从学生的经验中,逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律。有助于学生理解“数对”在确定位置中的作用。

  教学目标:

  1.在具体的情境中,能在方格纸上用数对确定位置。

  2.通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。

  教学重点:

  掌握确定位置的方法,说出某一物体的位置。

  教学难点:

  在方格纸上用"数对"确定位置。

  教学过程:

  一、活动一:活动引入,认识数对

  1、明确列、行排列规则

  (1)学生按座位卡找座位。

  位置卡

  第 -列,第 -排

  学生可能出现

  A、找不到座位。

  B、两人找到了同一个座位。

  (2)请同学说说找座位的方法,明确排与列的数法。

  我们把竖排叫做列,确定第几列一般从左往右数,引导生按列报数;横排叫做行,确定第几行一般从前往后数,引导生按行报数。

  (3)重新找自己的座位。

  (4)班长坐在第几列第几行?(同时板书)

  2、体会学习数对的必要,认识数对

  (1)用学生自己喜欢的简便的方法表示班长的位置,可以是数字,也可以是符号。(学生板演表示的多种形式)

  这么多的方法都对不对呢?你有什么意见?

  (2)在数学上就有一种“统一的方法”可以既清楚又简便的表示位置。

  班长的位置3列2排就可以用(3,2)来表示。

  (3)你在教室里的位置是第几列第几行?用数对怎样表示?小组交流。

  小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  生活中有没有运用数对解决的问题呢?

  3、生活中应用数对

  (1)根据位置写数对

  ①出示哈尔滨旅游景点的分布图。

  你能表示出各个景点在图中的位置吗?

  ②独立书写,全班交流。

  (2)根据数对找位置

  ①出示残缺的太阳岛景点分布图。

  你能帮忙把地图补充完整吗?

  ②学生操作后交流。

  得出:表示同一行中景点位置的数对,它们的第二个数相同;表示同一列中景点位置的数对,它们的第一个数相同。一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

  二、活动二:学生小结

  学习了确定位置,你有什么收获?

  三、活动三:课外引申——数对在国际象棋中的运用。

  1、课件出现国际象棋棋盘和棋子

  (1)介绍:国际象棋的棋盘是一个正方形,等分为六十四方格。这些方格有深浅两种颜色,交替排列。国际象棋的八条直线分别用a、b、c、d、e、f、g、h表示,八条横线分别用1、2、3、4、5、6、7、8表示。每个方格便有了自己的名字。国际象棋的棋子有黑白两色,各有一个王、一个后、两个车、两个象、两个马和八个兵。

  (2)如果白王所处的位置用国际象棋专用的方法记录为g2,你知道是用什么方法记录棋的位置的吗?

  (3)课件出现三枚棋子在棋盘上的不同位置,问:其他棋各在什么位置?

  (4)如果有一枚棋走一步记录为C6—C2,你知道是哪枚棋从什么位置走到什么位置上吗?

  四、活动四:游戏——摆子连线

  比赛规则:每3人一个小组,第一个学生先掷两次骰子。假如第一次是2,第二次是4,就将自己的棋子放在(2,4)的位置上(说明:棋子用一点来表示)。

  第二个学生接着同样的操作,按所掷的点数放棋子。如果位置被其他棋子占了,可以重新再掷。

  另外的一个学生负责记录。

  每放对一个棋子加1分、如果你将两个棋子连在一起就奖2分,3个棋子连在一起就奖3分,依此类推,将你们俩的得分记录在一张纸上、谁先得8分,谁就赢了。(学生操作,教师下去巡视)

  活动五:全课总结

  刚才,我们是怎样探究总结出用数对表示位置的方法的?

  板书设计:

  位 置

六年级数学教案 篇16

  教学目标:

  1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

  2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

  教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

  教学过程:

  一、开门见山、温固引新。

  师:还记得哪些与圆柱圆锥有联系的计算公式?

  生:回答相联系的数学公式。

  师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

  生:回忆基本知识。

  师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?

  1、抢答练习,请说出你的思考过程。

  (1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?

  (2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?

  (3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?

  学生抢答,并说出自己的思考过程,教师板书。

  2、解决数学问题:

  (1) 出示一圆柱图

  师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

  竞赛的形式来解决,竞赛要求:

  1、时间3分钟。

  2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

  (1) 学生独立完成;

  (2) 同桌互查;

  (3) 学生汇报;

  (半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

  (4)如果出现问题下面改正。

  师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?

  二、解决实际问题:

  最佳设计方案。

  师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?

  有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

  学生活动,老师巡视。小组成员汇报方案。

  三、深化应用。

  师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

  四、课堂总结。

  师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的心情及感受。

  其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?

  五、补充题详见共享空间

  课前思考:

  潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

  因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

  下面补充这样几题:

  市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。

  1.

  (1)这个水池占地多少平方米?

  (2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

  (3)这个水池装满水,最多能装多少立方米?

  (4)在池口围一圈栏杆,栏杆长多少米?

  2.一辆压路机的前轮是圆柱形,轮宽1.8米,直径是1.5米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?

  3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?