六年级上册数学优秀教案

2023-07-14

六年级上册数学优秀教案 篇1

  学习内容

  教科书第55页例3及课堂活动第3题,练习十五第8~11题。

  育人目标

  1.学会借助线段图等方法分析较为复杂的现实问题。

  2.能考虑现实情况应用不同的策略解决问题,掌握一些策略性的知识。

  3.培养学生的发散思维能力,形成解决问题的基本策略,以及团队协调合作的能力,同时对学生进行诚信教育。

  4.在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  掌握一些解决问题的方法和策略性的知识。

  学习评价设计

  1.学生在思考、讨论中归纳出按比例分配解决问题的方法。

  2.运用归纳的知识解决实际问题。

  教学过程

  情境引入

  1.同学们,在日常生活中常会出现团队合作的情况。(让学生先简要交流课前了解的信息:人们一起合伙运货、租房等,如何协调付费的.情况。)

  2.教师用课件呈现:三人需要用同一辆车运送同样多的货物共需90元,当车走到路程三分之一处,出现甲卸货,到路程的三分之二处,出现乙卸货,到终点是丙卸货。

  教师提出问题:他们如何分摊运费?请学生提出自己的想法。

  学生可能会提出:

  ①们运的货物同样重,把运费平均分配。

  ②尽管他们的货物一样重,但因为他们运的路程不一样。甲运的路程短应该少付,丙运的路程长应该多付。

  ③按照路程的长短按比例分配的办法来分摊运货的钱。

  ④能不能把运费分成每段30元,第一段由三人共同分担,第二段由乙和丙两人分担,第三段只有丙一个人承担,这样比较公平。

  ……

  以上方案中你认为哪一种比较公平?

  学生经过讨论会认为:平均分的方案不公平,因为甲运的路程短,却要和路程最长的丙付同样多的钱,这种方案在现实中不容易被接受。按比例分配或按每段路程来分摊钱的办法可以让运货路程短的付较少的钱,而运货路程长的付较多的钱,这样相对比较公平。

  抽生交流课前了解的信息。

  学生提出自己的想法

  讨论交流哪些方案才是公平的。

  在分摊运费的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  合作探究

  1.请选择自己认为比较公平的办法,把解决问题的方案和结果写出来。

  教师巡视,给予指导。

  2.交流汇报,展示学生解决问题的方案,要求汇报时阐明自己的解题思路。

  方法1:按路程比例分摊。把路程平均分成三段,甲行了一段付一份钱,乙行了两段路程付两份钱,丙行了三段路程应付三份钱。

  根据各人所行路程的段数,把钱一共分成:1+2+3=6(份)。

  其中甲占90的:90×1/6=15(元)

  乙占90的:90×2/6=30(元)

  丙占90的:90×3/6=45(元)

  答:甲应分摊15元的运费,乙应分摊30元的运费,丙应分摊45元的运费。

  方法2:按路程段数分摊。

  每一段的运费:90×1/3=30(元)

  第一段的运费甲、乙、丙三人分摊:

  30÷3=10(元),每人付10元。

  第二段运费由乙、丙两人分摊:

  30÷2=15(元),每人付15元。

  第三段运费由丙一人付30元。

  所以三人分摊的运费是:

  甲:10元

  乙:10+15=25(元)

  丙:10+15+30=55(元)

  答:甲应分摊10元的运费,乙应分摊25元的运费,丙应分摊55元的运费。

  3.对方案中存在的疑问可以组织学生进行辩论:如果你是甲,你会接受哪种方案?为什么?如果你是丙呢?

  独立设计公平的分摊方案。

  交流不同的解题思路。

  讨论交流,体验实际意义。

  在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  巩固应用

  1.课件出示情境。

  小强家房子出租给小李、小张、小王三个年轻人,每月房租是630元。6月份,小李只住到10日就搬走了,小张只住到20日也搬家了,小李和小张离开时都留给小王210元的房租。到月底小强的妈妈要去收房租了,如果你是小强,你会建议妈妈怎样收这三个年轻人的房租比较合理?

  由学生先提出方案,然后自己拟订方案解答。

  方法1:

  小李应付的房租:630×10/30x1/3=105(元)

  小张应付的房租:630×(10/30x1/3+10/30x1/2=210(元)

  小王应付的房租:630×(10/30x1/3+10/30x1/2+10/30)=315(元)

  方法2:

  630÷3=210

  小李:210÷3=70(元)

  小张:70+210÷2=175(元)

  小王:70+210÷2+210=385(元)

  请学生再思考:如果你是小王,你会怎样付房租?

  同时对学生进行诚信教育。

  2.课件出示:在方格纸上涂色设计图案(课堂活动第3题)。

  学生读懂题意后,让学生自选颜色,设计图案。然后再算出各种颜色所涂格子数的比,这样就把问题归结到按比例分配的问题上来,然后让学生自己去解决。

  先提出方案,然后自己拟订方案解答,最后全班交流自己分摊方法。

  讨论交流。

  独立理解题意,自选颜色设计图案并解答。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感,对学生进行诚信教育。

  课堂小结

  今天你学到了哪些解决问题的办法?

  谈收获。

  课堂作业

  练习十五第8~11题。

  思考题:参加比赛的人数应该是7的倍数(3+4=7),又因为参加比赛人数在160-170人之间,所以参加比赛的人数可能是161人或168人。

  独立完成。

六年级上册数学优秀教案 篇2

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:0、2的倒数是多少?

  五、小结:请学生说一说这节课学习了哪些内容。

  六、作业:练习五3—8。

六年级上册数学优秀教案 篇3

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:

  理解数量关系。

  教学难点:

  根据多几分之几或少几分之几找出所求量是多少。

  教具准备:

  多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、口答:把什么看作单位“1”的`量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。

  (2)用去一部分钱后,还剩下。

  (3)一条路,已修了。

  (4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?

  (2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级上册数学优秀教案 篇4

  教学目标:

  1、结合具体问题,经历认识成反比例关系的量的过程。

  2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

  3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。

  课前准备:

  找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。

  教学过程:

  一、问题情境

  1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?

  出示《安徒生童话》,可了解一下谁读过这本书。

  师:猜一猜,这本书有多少页?

  学生猜测,然后实际看一看,说出页数。

  师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。

  小黑板出示:亮亮红红聪聪丫丫

  每天看的页数12 15 18 20

  看的天数15 12 10 9

  2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?

  学生可能说出很多,如:

  ●亮亮每天看12页,看了15天。

  ●红红每天看15页,看了12天。

  ●聪聪每天看18页,看了10天。

  ●丫丫每天看20页,看了9天。

  ●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。

  二、认识反比例

  (一)读书问题

  1、师:观察表中的数据,你发现了什么规律?

  预设:●每天看的页数越多,看的天数就越少。

  ●每天看的页数越少,看的天数就越多。

  ●每天看的页数乘看书的天数,积是一定,都是180。

  第三种意见学生没有提出,教师启发:

  师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:

  每天看的页数×需要的天数=书的总页数(一定)

  2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)

  师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。

  板书:成反比例的量

  3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。

  师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?

  学生说,教师填在表格中。

  面值5元1元5角2角1角

  张数2 10 20 50 100

  师:仔细观察表中数据,你都发现了什么?

  学生可能会说:

  ●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。

  ●表中面值与张数的积是一定的。

  师:你们能总结出这里的数量关系式吗?

  学生回答,教师随机板书:

  钱的面值×张数=10(元)

  4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。

  学生可能会说:

  ●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的张数就变小;钱的面值变小,张数就变大。

  ●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。

  师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。

  学生讨论后,多请几人发言。

  5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?

  学生可能会说:

  ●它们都是乘积一定,一个量变大,另一个量变小。

  师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关系称为反比例关系。这段话在课本第13页,请同学们自己读一读。

  学生自己读书。

  6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?

  学生可能会说:

  ●是两个相关联的量。

  ●这个量的乘积一定。

  ●一个量变大,另一个就变小;一个量变小,另一个就变大。

  三、尝试应用

  1、让学生自己判断“试一试”中的三组数量。

  师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。

  给学生独立思考、交流的时间。

  2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?

  重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。

  3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。

  学生交流,然后指名举例并说明理由。

  4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。

  给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。

  学生可能会说:

  ●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。

  ●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。

  学生如果有其他说法,只要意思对,就给予肯定。

  四、课堂练习

  1、练一练第2题,先让学生自己读题并判断,然后指名汇报。

  2、练一练第3题,完成表格再判断,交流时说出自己的想法。

  3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。

  五、知识拓展

  介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。

  师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。

六年级上册数学优秀教案 篇5

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的.水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

六年级上册数学优秀教案 篇6

  教学目标:

  1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

  2、能灵活运用本单元研究得出的知识解答问题。

  3、 进一步感受数学的应用价值。

  教学重点:

  圆的周长和面积的'计算。

  教学难点:

  综合应用。

  教学过程:

  一.引入

  1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

  2.揭示课题。

  二.展开

  1.求圆面积的练习

  先用小黑板出示P27练习1——2再指名板演,

  然后让板演者说说计算过程。最后再次复习圆面

  积在各种条件下的计算公式:S=πr2=π2

  2.综合应用。

  投影出示P27练习3~4题,先由4人组成小组

  进行讨论,并解答,然后在全班同学面前汇报,

  特别要说清思考过程,最后,教师讲解。

  三.总结

  本节课我们复习了什么?

  四.作业

  课后反思:

  教学内容 练习一(2) 课时

  教学目标:1.能灵活运用本单元研究得出的知识解答问题。

  2.通过图形的组合,发展学生的空间想象能力。

  3.进一步感受数学的应用价值。

  教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

  教学难点:培养学生的空间能力,提高解决实际问题的能力。

  一.复习

  1、什么叫半径?什么叫直径?怎样求圆的周长?

  怎样求圆的面积?

  二.展开绿色圃中

  1.练习。

  先指名板演,其余同学各自做在草稿纸上,

  然后全体师生共同讲评,指出存在的错误,

  尤其是做在草稿纸上的同学一定要自己找出

  错误的原因和正确的解答过程,小组进行练习。

  2.小结。

  三.巩固练习

六年级上册数学优秀教案 篇7

  教学内容:课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  二、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  三、自学新课:

  自学书本P19。并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  四、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的`,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  五、练习

  1、判断下列各组数是否互为倒数,为什么?

  和和和和

  2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?

  1)5的倒数是多少?

  2)所有的自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  4、完成课本P19页的“做一做” 。

  5、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:练习五3—8。

六年级上册数学优秀教案 篇8

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的.1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学优秀教案 篇9

  教学内容:课本第6页的内容和练习二的第5—11题。

  教学目的:

  1、进一步掌握分数乘分数的计算法则,并能比较熟练地进行计算。

  2、培养学生的计算能力。

  教学过程:

  一、复习。

  1、计算下面各题,并说一说计算方法。

  2、把下面的整数改写成分数。

  2=5=14=25=

  二、新授。

  1、统一计算法则。

  (1)到目前为止,你学会了哪些分数乘法的`知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?

  (2)请你试算一算:

  (学生小组合作学习,教师巡视。)

  学生边展示计算过程,边阐述理由。

  (3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。

  2、书写形式。

  (1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的分子相乘,不必把整数化成分母是1的分数。

  例如:

  (2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。

  例如:

  3、做一做。

  完成课本第6页下面的做一做题目。

  三、巩固练习。

  1、练习二的第6题。

  2、练习二的第8题。

  3、练习二的第10题。

  四、总结。

  这节课你有什么收获?

  五、课堂练习。

  练习二的第5、7、9、11题。

六年级上册数学优秀教案 篇10

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第2~3页。

  【教学目标】

  1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用“数对”确定位置。

  2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

  3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

  【教学重点】

  使学生经历确定位置的'全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用“数对”确定位置。

  【教学过程】

  一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置

  1.谈话引入。

  今天有这么多老师和我们一起上课,同学们欢迎吗?

  老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?

  2.合作交流,在已有经验的基础上探究新知。

  (1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

  汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…

  哪个小组也用语言描述出了班长的位置?

  请班长起立,他们的描述准确吗?

  刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)

  看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

  板书:列 行

  老师左手起第一组就是第一列…,横排就是第一行…

  班长的位置在第4列、第3行。

  还有其他的表示方法吗?

六年级上册数学优秀教案 篇11

  一、教学内容:

  苏教版六年级上册68-77页

  二、教材分析:

  《认识比》是苏教版六年级上册中第五单元内容,是本册教材的教学重点之一。教材密切联系学生已学有的学习经验和生活经验过,设置了多种情境图。通过对这部分内容的教学,不仅能够发展对除法与分数的认识,进一步沟通知识间的联系,还能够加深学生对比的性质、比的应用理解。

  三、学情分析:

  学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的`内在联系,完善认知结构,为以后进一步学习比例及其它方面的知识打好基础。

  四、教学目标:

  1.知识技能:使学生在具体的情境中理解比的意义,掌握比的读法、写法,知道比的各部分名称,要会求比值。

  2.过程与方法:使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3.情感态度与价值观:使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  五、教学重点:

  理解比的意义;理解比与分数、除法的关系。

  六、教学难点:

  理解比与分数、除法的关系,在生活中发现比,感受比。

  七、教具准备:

  多媒体课件、学生自备三角板一副

  八、教学过程:

  1.创设情境,引入比

  课件出示例1问:图上有什么?(2杯果汁,三杯牛奶)想一想:可以怎样表示这两个数量之间的关系?根据学生回答课件呈现:牛奶比果汁多一杯;果汁比牛奶少一杯果汁的杯数是牛奶的;牛奶的杯数是果汁的板书:2÷3=

  3÷2=

  小结:两个数量相比较,既可以用减法来比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。其实,在比较两个数量之间的关系时,还可以用比来表示。这就是我们今天一起学习的新内容——认识比(板书)

  2.自主探究,认识比

  (1)用比表示两个同类量之间的相除关系

  (2)用比表示两个不同类量之间的相除关系

  (3)揭示比的意义。观察屏幕上的几个比,想一想两个数的比可以表示什么?想好以后和你的同桌讨论一下。(小组交流、全班交流)

  小结:分数就是除法,比与除法有关系,两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。问:比的后项能为0吗?

  不能

  (4)课件出示

  3.自主练习,应用比

  学生独立完成课本P70“练一练”1、2、3

  4.拓展延伸,感受比

  你听说过“黄金比”吗?黄金比的比值约等于0,618。从古希腊以来,一直有人认为把黄金比应用于造塑艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。能找找看吗?

  5.课堂小结:两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。

六年级上册数学优秀教案 篇12

  教学内容:课本P15页例2,及练习四的6—10。

  教学目的:

  1、使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

  2、进一步培养学生分析问题的能力。

  教学重点:

  使学生理解并掌握求一个数的几分之几是多少的两步计算应用题的数量关系,正确解答。

  教学难点:

  辨析两次判断单位“1”有什么不同。

  教学过程:

  一、基本练习。

  1、先说出下列各算式表示的意义,再口算出得数。

  2、指出下面每组中的两个量,应把谁看作单位“1”。

  1)香蕉的筐数是苹果的`。

  2)香蕉的筐数的和苹果的筐数相等。

  3)黄牛只数的等于水牛的只数。4)水牛的只数相当于黄牛的。

  二、新课学习。

  1、出示例2。

  2、读题,分析题意。说出已知条件和所求问题。明确这是一道两步计算的应用题。

  3、怎样用线段图表示已知条件和问题。

  思考:要画几条线段?5/6和2/3分别是谁的5/6和2/3?单位“1”分别是什么?

  根据学生的回答画图。

  4、确定每一步的算法,列式计算。

  1)求小华储蓄的钱数怎样想?

  思路:根据“小华储蓄的钱数是小亮的5/6,把小亮的钱数看作单位“1”,就是求18的5/6是多少,所以用乘法计算。列式:

  (元)

  2)求小新储蓄的钱数怎样想?思路同上。注意认清单位“1”

  5、指导列综合算式解答。

  6、总结今天所学内容和昨天的异同。

  7、练习

  1)完成课本P15页下的“做一做”。

  2)指名说一说是怎样确定计算方法的。

  三、新课小结。

  1、分数乘法两步应用题与前一节所学的一步应用题有什么相同点和不同点?

  2、解答这类应用题的关键是什么?怎样判断计算方法?

  四、巩固练习:P16练习四6、7。

  五、作业。

  完成练习四的第8—10题。

六年级上册数学优秀教案 篇13

  教学内容:一个数乘以分数及其应用题。

  教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的`几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

  教学过程:

  一、只列式不计算

  1)两地相距4千米,小明行了4/5千米,还剩多少千米?

  2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

  二、发展练习

  (1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

  (2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

  (3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

  (4)每小时骑车行11千米,这4小时一共行多少千米?

  2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?

  3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?

  4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  五、作业:练习四第11—15题。

六年级上册数学优秀教案 篇14

  一、班级学生数学学习情况分析

  本班共有学生50人,其中男生22 人,女生28人。从本学期的教学情况看,大部分的学生学都是留守儿童,习态度不端正。学习习惯极需培养,空间观念不够强。上课时不肯积极思考,主动、创造性的学习有待加强。针对这些情况,在复习中重点抓好基础知识教学的同时,加强学困生的辅导和优等生的指导工作,全面提高均分、及格率和优秀率。

  二、复习内容及要点:

  1、长方体和正方体:使学生进一步体会长方体和正方体的基本特征,进一步理解体积(容积)及其常用计量单位的意义;进一步理解并掌握长方体、正方体的体积和表面积的计算方法,能正确解答有关这方面的简单实际问题。

  2、分数乘法 :复习分数乘法和意义和计算方法,记熟单位“1”的判断方法,巩固训练简便计算;复习“求一个数的几分之几是多少”和“求一个数比另一个数多(或少)几分之几”的应用题,能快速确定一个数的倒数。

  3、分数除法 :复习巩固分数除法的意义和计算方法,强化训练解答“已知一个数的几分之几是多少求这个数”和“求一个数比另一个数多(或少)几分之几”的实际问题。复习比的意义,比与分数、除法的关系,比的基本性质,进一步巩固化简比和求比值,让每个学生都能运用比的知识解决有关的实际问题。

  4、百分数 :复习百分数的意义、读法、写法,能正确进行百分数与分数、小数的互化,复习巩固求率、折扣、纳税、利息的方法,并运用这些方法进行简单的计算。会解决“求一个数是另一个数的百分之几”的简单实际问题。

  三、复习目标

  通过总复习,系统、全面地复习和整理本学期所学知识,帮助学生构建合理的知识体系,以便学生更好地理解和掌握所学的概念、计算方法以及有关的规律性的知识,进一步发展学生的数概念、空间概念、统计概念,增强学生综合运用知识的能力,全面达到本学期的教学目标。

  1、理解分数乘、除法的运算意义,掌握分数乘、除法的计算方法和分数四则混合运算的'运算顺序;能正确计算分数乘、除法和分数四则混合运算(不超过三步)式题,能应用运算律和运算性质进行有关分数的简便计算;能应用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,能列方程解决“已知一个数的几分之几是多少,求这个数”的简单实际问题,能用分数乘法和加、减法解决稍复杂的实际问题(不超过两步)。

  2、理解比的意义和基本性质,能应用比的意义和基本性质求比值、化简比,能正确解决按比例分配的实际问题。

  3、理解百分数的意义,能正确进行百分数与分数、小数的互化,会解决“求一个数是另一个数的百分之几”的简单实际问题。

  4、认识圆,掌握圆的基本特征,理解直径与半径的相互关系;会用圆规画圆。理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

  5、学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合应用学过的数学知识和方法解释日常生活现象、解决简单实际问题,进一步发展数感、空间观念和统计观念,增强解决问题的策略意识和反思意识,提高解决问题的能力。

  6、学生在整理与复习的过程中,进一步评价和反思自己在本学期的整体学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,发展对数学的积极情感,增强学好数学的自信心。

  四、复习重点

  分数、百分数的计算(包括分数乘法、分数除法、分数四则混合运算)及应用题。圆的概念和周长、面积的计算。

  五、复习难点

  从学生平时的作业和单元检测情况来看最大的问题是分数、百分数稍复杂的除法应用题,其次是分数和百分数、圆的概念。

  六、复习措施

  1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。

  2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。

  3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。

  4、加强计算能力的训练

  学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。

  5、加强与实际的联系

  适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。

  6、讲练结合精心设计练习,把有营养的知识方法做成有味道的数学问题和练习吸引学生去探究

  7、分层指导:针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层,充分体现问题练习的层次性,让不同的学生在复习中都自己新的收获。

  七、具体安排:

  1、12——1、16 复习一、二单元并进行检测。

  1、19——1、23 复习三、四单元并进行检测。

  1、26——1、30 复习五、六、单元并进行检测。

  2、2——2、6 综合性练习

六年级上册数学优秀教案 篇15

  学习内容

  教科书第54页例1,课堂活动第1题,练习十五第1~3题。

  育人目标

  1.在实际情境中理解按比例分配的意义。掌握按比例分配解决问题的方法,能正确解决简单的按比例分配的问题。

  2.经历探索按比例分配解决问题方法的产生过程,培养学生的分析问题、解决问题的能力。

  3.通过自主学习等活动发展学生自主探究的意识,渗透转化的数学思想,并从中感受数学与生活的密切联系。

  4.在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  1.能正确运用按比例分配的方法解答简单的数学问题。

  2.正确解决按比例分配的实际问题。

  学习评价设计

  1.学生思考用不同的策略来解决问题。

  2.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  教学过程

  情境引入

  同学们都有买文具的经历,请看大屏幕(实物投影出示与学生生活紧密联系的实例)几个同学凑钱批发文具,我们来看看他们是怎样买的?

  ①李芸和张倩各拿出8元钱,一共买了10支水彩笔。他俩该怎么分这些笔?

  学生回答后,教师及时做出评价,板书教学。

  ②这儿还有两个同学,也批发了一些文具,陈红拿出6元,赵青拿出4元,一共买了15本同样的笔记本。(指导学生读题)

  这两个同学怎样分这些笔记本?

  学生说出自己的想法,教师组织评议。

  小结得出:按拿钱的`多少来分配笔记本最合理,这种分配方法通常叫做按比例分配。(板书课题:按比例分配(一)

  学生口答,独立思考,再交流:

  生:平均分,一人5支。

  生:陈红多点,赵青少点。

  在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  探究新知

  1.理解按比例分配的意义。

  把10支水彩笔平均分给两个同学,为什么要平均分呢?让学生理解,因为两人拿出的钱数同样多,也即拿出的钱数比是1:1,所以要平均分。

  陈红和赵青分笔记本,为什么不平均分呢?

  组织学生思考交流,因为两人拿出的钱数不一样多,再平均分是不公平的。要做到公平,应根据出钱多少来分配才合理。两人拿出的钱数的比是3:2,那么,15本笔记本应按3:2分配。

  最后,教师指出:像这样把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

  2.例举身边的事例,进一步理解按比例分配的意义。

  生活中还有很多这样的例子,需要把某一物品按照一定的比来进行分配,比如:实物投影出示物品配料标签。

  (1)某配方奶粉调配时,奶粉和水的比为1∶7,按照这个调配建议,我们在冲奶粉时能平均放奶粉和水吗?

  (2)市场上出售一种5升装的混合油,其中橄榄油与花生油的比是1∶1,这是一种什么样的分装方法?这5升油中,花生油有多少升?

  (组织学生分组讨论反馈.

  交流后,教师及时做出评价)

  你们在生活中有没有遇见这样的例子?介绍给大家听听。(学生举例)

  3.学习例1。

  同学们理解了什么是按比例分配,下面(第54页例1)大家开动脑筋,帮助陈红和赵青分一下笔记本,看看谁分配得最合理,分配的方法最容易操作!

  (1)学生独立思考、计算,教师巡视指导

  (2)反馈学生做法,集体分析解法。

  方法1:陈红、赵青拿出钱数的比是:6∶4=3∶2

  解:设每份是x本。

  3x+2x=15

  5x=15

  x=3

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法2:先求出每份是多少本,再分别求出两人应分的本数。

  15÷(3+2)=3(本)

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法3:总份数是3+2=5,因为陈红应分的本数占15本的,赵青应分得本数占15本的,所以:陈红应分的本数:15×=9(本)。赵青应分的本数:15×=6(本)。

  答:陈红应分9本,赵青应分6本。

  学生交流解法,并说明解题思路。通过评价,鼓励学生用不同的策略来解决问题。

  (3)同学们想出了这么多不同的方法来解决问题,真棒!可是你们如何证明自己的解法是正确的?(引导学生用不同的方法进行检验)

  方法1:把求得陈红、赵青所分到的笔记本数加起来,看是否等于总数15本。

  方法2:把陈红、赵青所分到的笔记本数写成比的形式,看化简后是不是等于3∶2。

  (4)引导反思:这道题有什么特点?我们是怎样解决的?

  特点:把15本笔记本作为总量,按照给定钱数的比进行分配,像这种方法:用份数的思路解答;用分数的思路解答;用方程解答。

  如果按1∶1分配,是怎样分?

  指出:平均分是按比例分配的特例。

  独立思考再交流理解为什么要平均分。

  结合生活实例讨论交流理解按比例分配的实际意义。

  举例交流。

  学生独立完成再汇报交流不同的解题思路。

  用不同的方法进行检验。

  反思交流按比例分配这类型的特点及解题方法。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  巩固练习

  1.练习十五第1题(学生交流解法,并说明解题思路,并鼓励学生用不同的策略来解决问题。)

  2.学生独立完成练习十五第2、3题,完成后用投影仪集体订正。

  3.课件出示课堂活动第一题(阅读资料,结合自己班的人数,设计一个合适的比,将全班学生分成两部分来参加两项公益活动,然后全班交流。)

  学生独立完成,再交流不同的解题策略。

  课堂小结

  同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)在这么多解决问题的方法中,你最喜欢哪一种?为什么?

  谈收获。

六年级上册数学优秀教案 篇16

  教学目标:

  1、在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2、使学生能在方格纸上用数对确定位置。

  教学重点:

  能用数对表示物体的位置。

  教学难点:

  能用数对表示物体的位置,正确区分列和行的顺序。

  教学过程:

  一、导入

  1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示___同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3)教学写法:____同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的'方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、小结例1:

  (1)确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

  3、练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  4、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

  三、练习

  1、练习一第4题

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、练习一第6题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、总结我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、作业

  练习一第1、2、5、7、8题。