一元二次方程根的判别式

2023-01-08

一元二次方程根的判别式 篇1

  这节课按照设想完成了。效果如何呢?我布置了如下的几道作业题:

  1.关于X的方程2kx2-2x-3k-2=0的两个实根一个小于1,另一个大于1,求实数k的取值范围。

  2.已知关于x的方程kx2+1/2kx+k-2=0有两个实根,其中一根在(0,1)之间,另一根在(-1,0)之间,求实数k的取值范围。

  3.关于x的方程2x2-3x-3+2m=0的两根均在[-1,1]之间,求m的范围。

  4.集合A={(x,y)|y-x2+mx+2},B={(x,y)|x-y+1=0且0≤x≤2},若A∩B≠Ф,求实数m的取值范围。

  思考题:

  1.关于实系数的一元二次方程x2+ax+bx=0的两实根α,β,证明

  (1)如果|α|<2,|β|<2,那么2|a|<4+b且|b|<4;

  (2)如果2|a|<b+4且|b|<4,那么|α|<2,|β|<2.

  题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。

  我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。<b+4且|b|<4,那么|α|<2,|β|<2. 

  题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。

一元二次方程根的判别式 篇2

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

  b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标 :

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点 :

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程 

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0           (2)x2  -2x =-1

  (3)(x+1)2- 4=0    (4)x2  +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  ax2+bx+c=  -c

  x2+    x =-

  x2+    x+(       )2=(       )2 —

  2

  (x+      ) 2=           2

  2                             

  2、观察(x+      ) 2=           2     在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

  (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

  (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么?                     a=_______

  B、一次项系数是什么?                     b=_______

  C、常数项是什么?                            c=_______

  (2)建立等式,根据有个常数根   b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业 

  1、把例1、例2整理在作业 本上。

  2、有余力的同学把练习题整理在作业 本。

  四、教学后记:

一元二次方程根的判别式 篇3

  课题:一元二次方程根的判别式

  大于镇中             赵从品

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

  b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标 :

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点 :

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程 

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0           (2)x2  -2x =-1

  (3)(x+1)2- 4=0    (4)x2  +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  ax2+bx+c=  -c

  x2+    x =-

  x2+    x+(       )2=(       )2 —

  2

  (x+      ) 2=           2

  2                             

  2、观察(x+      ) 2=           2     在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

  (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

  (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么?                     a=_______

  B、一次项系数是什么?                     b=_______

  C、常数项是什么?                            c=_______

  (2)建立等式,根据有个常数根   b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业 

  1、把例1、例2整理在作业 本上。

  2、有余力的同学把练习题整理在作业 本。

  四、教学后记:

  课题:一元二次方程根的判别式

  大于镇中             赵从品

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

  b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标 :

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点 :

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程 

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0           (2)x2  -2x =-1

  (3)(x+1)2- 4=0    (4)x2  +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  ax2+bx+c=  -c

  x2+    x =-

  x2+    x+(       )2=(       )2 —

  2

  (x+      ) 2=           2

  2                             

  2、观察(x+      ) 2=           2     在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

  (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

  (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么?                     a=_______

  B、一次项系数是什么?                     b=_______

  C、常数项是什么?                            c=_______

  (2)建立等式,根据有个常数根   b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业 

  1、把例1、例2整理在作业 本上。

  2、有余力的同学把练习题整理在作业 本。

  四、教学后记:

一元二次方程根的判别式 篇4

  课题:一元二次方程根的判别式

  大于镇中             赵从品

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

  b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标 :

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点 :

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程 

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0           (2)x2  -2x =-1

  (3)(x+1)2- 4=0    (4)x2  +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  ax2+bx+c=  -c

  x2+    x =-

  x2+    x+(       )2=(       )2 —

  2

  (x+      ) 2=           2

  2                             

  2、观察(x+      ) 2=           2     在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

  (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

  (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么?                     a=_______

  B、一次项系数是什么?                     b=_______

  C、常数项是什么?                            c=_______

  (2)建立等式,根据有个常数根   b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业 

  1、把例1、例2整理在作业 本上。

  2、有余力的同学把练习题整理在作业 本。

  四、教学后记:

一元二次方程根的判别式 篇5

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

  b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标 :

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点 :

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程 

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0           (2)x2  -2x =-1

  (3)(x+1)2- 4=0    (4)x2  +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  ax2+bx+c=  -c

  x2+    x =-

  x2+    x+(       )2=(       )2 —

  2

  (x+      ) 2=           2

  2                             

  2、观察(x+      ) 2=           2     在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

  (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

  (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么?                     a=_______

  B、一次项系数是什么?                     b=_______

  C、常数项是什么?                            c=_______

  (2)建立等式,根据有个常数根   b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业 

  1、把例1、例2整理在作业 本上。

  2、有余力的同学把练习题整理在作业 本。

  四、教学后记: