4.2一元一次方程

2023-01-08

4.2一元一次方程 篇1

  2.4再探实际问题与一元一次方程

  -----销售中的盈亏(第一课时)

  教学任务分析

  

  

  

  

  知识技能

  使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。

  教学

  思考

  1.会将实际问题转化为数学问题,通过列方程解决问题。

  2.体会数学的应用价值。

  解决

  问题

  会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的.盈亏问题,进一步了解用方程解决实际问题的基本过程。

  情感

  态度

  通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。

  

  

  让学生知道商品销售中的盈亏的算法。

  难点

  弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。

  . 课前准备

  教具

  学具

  补充材料

  课件

  铺垫练习     课堂练习  拓广延伸练习

  三.教学过程设想

  教  师  活  动

  学生活动

  设计意图

  一.创设情境,引入新课

  前面我们结合实际问题讨论了如何分析数量

  关系,利用相等关系列方程以及如何解方程,

  可以看出方程是分析和解决问题的一种很有用

  的数学工具,本节课我们就来探究如何用一元

  一次方程解决实际问题。

  学生回忆、猜想

  激起学生主动回

  忆、联想和学习欲

  望。

  二.师生互动,课堂探究

  (出示课件)

  教师先介绍图片,再提问

  问题一:某商店在某时间以每件60元的价格

  卖出两件衣服,其中一件盈利25%,另一件亏

  损25%,卖出这两件衣服总的是盈利还是亏损,

  或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。

  学生观察、合

  作交流、讨论、

  发表看法

  培养学生学会合

  作交流,善于听取

  他人见解和敢于发

  言,让学生大体估

  算身边的实际问题

  ,可激发学习兴趣

  和探究的主动性。

  问题二:渐进给出,教师因情引导,并板书

  利润=进价×利润率

  如果一件商品的进价是40元,

  (1)    如果卖出后盈利25%,那么该商品的

  利润怎样算?

  (2)    如果卖出后亏损25%,那么该商品的

  利润怎样算?

  (3)那么利润、进价、利润率有什么关系?

  学生合作交流

  讨论、归纳、发

  表意见

  让学生结合生活

  经验,由身边熟悉

  实际的问题构建数

  学模型,培养学生

  会用数学方法解决

  实际问题,和由特

  殊到一般,概括能

  力、学生感到好学

  ,进而乐学,从感

  性上自然地熟悉销

  售中的等量关系,

  并逐步突破重难点

  ,为以后问题打下

  基础。

  问题三:渐近给出,教师因情引导,并板书

  利润=售价-进价

  或  利润+进价=售价

  (1)小卖部老板的面包进价为0.80元/个,

  卖给同学们1元/个,老板获取利润怎样算?

  (2)因而利润、售价、进价的关系又如何呢?

  问题四:教师逐步给出,并引导学生根据问题

  二、三中的等量关系来回答,解答,最后给出解

  题步骤,并板书。

  思考:盈利25%、亏损25%的意义?

  引导学生得出:盈利25%,即这件商品的销售利润值(售价—进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价—售价)是商品进价的25%。

  问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?

  问题②:如何说明你的估算是正确的呢?

  问题③:如何判断是盈还是亏?

  问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?

  问题⑤:商品销售中的进价、 售价、 利润、利润率有何关系?

  巡视学生完成情况,给予辅导,最后给出解题

  步骤。

  三.归纳总结。

  学生合作、交

  流、讨论、思考

  、补充解答过程

  让学生学会回顾

  已有知识,学会分

  析解决实际问题,

  养成好动脑、动手

  、合作学习的习惯

  ,体验成功感,以

  突破重难点,达到

  教学目标。

  四.知识拓展,教师给出问题

  (1)    汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?

  (2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30℅,以后每月付款450元,问明明的爸爸需几个月付清余下的款?

  学生独立思考

  并完成、展示

  及时巩固所学知

  识

  五.回顾与小结

  1.能理解商品销售中的基本概念及相等关系

  ,熟练地应用  “利润=售价-进价、

  利润=进价×利润率”

  来寻找商品中的相等关系

  2.能联系以前研究过的问题,加深理解用一

  元一次方程解决实际问题的一般步骤。

  六.拓展延伸题。(略)

  学生看黑板、

  屏幕、教材、记

  录

  回顾所学知识,

  学会梳理、概括、

  总结。

  七.作业布置

  教材第97页 第3、题

  学生记录 

  对已学知识强化

  巩固

4.2一元一次方程 篇2

  教学目标:1.使学生进一步掌握解一元一次方程的移项规律。2.掌握带有括号的一元一次方程的解法;3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.教学重点:带有括号的一元一次方程的解法.教学难点:解一元一次方程的移项规律.教学手段:引导——活动——讨论教学方法:启发式教学教学过程(一)、情境创设:知识复习(二)引导探究:带括号的方程的解法。例1.2(x-2)-3(4x-1)=9(1-x).解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)去括号,得:                                      移项,得:                                                      合并同类项,得:                                                系数化1,得:                                                  遇有带括号的一元一次方程的解法步骤:                               (三)练习:                  (a)组1.下列方程的解法对不对?若不对怎样改正?解方程2(x+3)-5(1-x)=3(x-1)解:2x+3-5-5x=3x-1,2x-5x-3x=3+5-3,-6x=-1,2.解方程:   (1)10y+7=12-5-3y;                  (2)2.4x-9.8=1.4x-9.3.解方程:(1)3(y+4)12;                            (2)2-(1-z)=-2;(b)组(1)2(3y-4)+7(4-y)=4y;                 (2)4x-3(20-x)=6x-7(9-x);(3)3(2y+1)=2(1+y)+3(y+3)               (4) 8x+4=2(4x+3)-2(-3+x)(四)教学小结本节课都教学哪些内容?哪些思想方法?应注意什么?

4.2一元一次方程 篇3

  一、教学目标 :

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程 

  1、课前训练一

  (1)如果 | | =9,则  =           ;如果 2 =9,则  =            

  (2)在数轴上距离原点4个单位长度的数为                    

  (3)下列关于相反数的说法不正确的是(     )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0 

  D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数  ,如:

  (5)如果 ,则(      )

  A、 , 互为倒数   B、 , 互为相反数    C、 , 都是0    D、 , 至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程(     )

  A、    B、    C、   D、 00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:(      )

  A、 +25=310   B、 +( +25)=310   C、2 [ +( +25)]=310   D、[ +( +25)] 2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为             平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

  解:设每个练习本要 元,则每个笔记本要         元,依题意可列得方程:

  6、归纳方程、的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是(     )

  A、    B、     C、   D、

  (2)下列方程中,属于的是(       )

  A、     B、     C、    D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了 场,则平了          场,依题意可列得方程:                   

  解得 =                

  答:甲队胜了        场,平了        场。

  (4)根据条件“一个数 比它的一半大2”可列得方程为                      

  (5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为              

  四、课外作业  P151习题5.1 

4.2一元一次方程 篇4

  复习目标:

  (1)了解方程、以及方程的解等基本概念。

  (2)会解。

  (3)会根据具体问题中的数量关系列出并求解。

  重点、难点:

  1. 重点:

  及方程的解的基本概念。

  的解法。

  会用解决实际问题。

  2. 难点:

  的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析:明确的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为就要使其中一个未知数的系数为0。

  解:

  例2.

  分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

  解:

  例5.

  分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

  解一:设车的速度为x m/s

  经检验,符合题意。

  答:车的速度为20m/s。

  解二:设车身的长度为x m

  经检验,符合题意。

  答:车的速度为(1000+200)/60=20m/s

  例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解:设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答:零售票价为19.2元。

  【模拟试题】

  一. 填空题。

  1. 已知方程 的解比关于x的方程 的解大2,则 _________。

  2. 关于x的方程 的解为整数,则 __________。

  3. 若 是关于x的,则k=_________,x=_________。

  4. 若代数式 与 的值互为相反数,则m=_________。

  5. 的解为x=0,那么a、b应满足的条件是__________。

  二. 解方程。

  1.

  2.

  3.

  4.

  三. 列方程解应用题。

  1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

  2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

  【试题答案】

  一. 填空题。

  1.                     2.

  3. 1,1                     4.                   5.

  二. 解方程。

  1.                      2.

  3.                    4.

  三. 列方程解应用题。

  1. 买364个鸡蛋

  2. 戴红帽子4人,黄帽子3人

4.2一元一次方程 篇5

  一元一次方程的复习

  复习目标:

  (1)了解方程、一元一次方程以及方程的解等基本概念。

  (2)会解一元一次方程。

  (3)会根据具体问题中的数量关系列出一元一次方程并求解。

  重点、难点:

  1. 重点:

  一元一次方程及方程的解的基本概念。

  一元一次方程的解法。

  会用一元一次方程解决实际问题。

  2. 难点:

  一元一次方程的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

  解:

  例2.

  分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

  解:

  例5.

  分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

  解一:设车的速度为x m/s

  经检验,符合题意。

  答:车的速度为20m/s。

  解二:设车身的长度为x m

  经检验,符合题意。

  答:车的速度为(1000+200)/60=20m/s

  例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解:设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答:零售票价为19.2元。

  【模拟试题】

  一. 填空题。

  1. 已知方程 的解比关于x的方程 的解大2,则 _________。

  2. 关于x的方程 的解为整数,则 __________。

  3. 若 是关于x的一元一次方程,则k=_________,x=_________。

  4. 若代数式 与 的值互为相反数,则m=_________。

  5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

  二. 解方程。

  1.

  2.

  3.

  4.

  三. 列方程解应用题。

  1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

  2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

  【试题答案】

  一. 填空题。

  1.                     2.

  3. 1,1                     4.                   5.

  二. 解方程。

  1.                      2.

  3.                    4.

  三. 列方程解应用题。

  1. 买364个鸡蛋

  2. 戴红帽子4人,黄帽子3人

  一元一次方程的复习

  复习目标:

  (1)了解方程、一元一次方程以及方程的解等基本概念。

  (2)会解一元一次方程。

  (3)会根据具体问题中的数量关系列出一元一次方程并求解。

  重点、难点:

  1. 重点:

  一元一次方程及方程的解的基本概念。

  一元一次方程的解法。

  会用一元一次方程解决实际问题。

  2. 难点:

  一元一次方程的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

  解:

  例2.

  分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

  解:

  例5.

  分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

  解一:设车的速度为x m/s

  经检验,符合题意。

  答:车的速度为20m/s。

  解二:设车身的长度为x m

  经检验,符合题意。

  答:车的速度为(1000+200)/60=20m/s

  例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解:设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答:零售票价为19.2元。

  【模拟试题】

  一. 填空题。

  1. 已知方程 的解比关于x的方程 的解大2,则 _________。

  2. 关于x的方程 的解为整数,则 __________。

  3. 若 是关于x的一元一次方程,则k=_________,x=_________。

  4. 若代数式 与 的值互为相反数,则m=_________。

  5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

  二. 解方程。

  1.

  2.

  3.

  4.

  三. 列方程解应用题。

  1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

  2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

  【试题答案】

  一. 填空题。

  1.                     2.

  3. 1,1                     4.                   5.

  二. 解方程。

  1.                      2.

  3.                    4.

  三. 列方程解应用题。

  1. 买364个鸡蛋

  2. 戴红帽子4人,黄帽子3人

4.2一元一次方程 篇6

  一、教学目标 

  1.使学生理解分式方程的意义.

  2.使学生掌握的一般解法.

  3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

  二、教学重点和难点

  1.教学重点

  (1)的解法.

  (2)分式方程转化为整式方程的方法及其中的转化思想.

  2.教学难点 :理解解分式方程时产生增根的原因.

  三、教学方法

  启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

  四、教学手段

  演示法和同学练习相结合,以练习为主.

  五、教学过程 

  (一)复习及引入新课

  1.提问:什么叫方程?什么叫方程的解?

  答:含有未知数的等式叫做方程.

  使方程两边相等的未知数的值,叫做方程的解.

  2.

  解:(1)当 时,

  左边=,

  右边=0,

  ∴左边=右边,

  ∴

  (2)

  (3)

  3、在本章开始我们曾提出一个问题,经过分析得到问题的量为两个分式: , 根据量间的关系列出方程:

  这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

  (二)新课

  板书课题:

  板书:分式方程的定义.

  分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

  练习:判断下列各式哪个是分式方程.(投影)

  (1) ; (2) ; (3) ;

  (4) ; (5)

  在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.

  1、如何求解方程 ?

  先由同学讨论如何解这个方程.

  在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.

  解:两边同乘以最简公分母x(x-6)得

  90(x-6)=60x解这个整式方程得x=18.

  如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

  检验:把x=18代入原方程

  ,

  左边=右边

  ∴x=18是原方程的解.

  2、如何解方程 ?

  此题可由学生讨论解决.

  解:方程两边同乘最简公分母(x+1)(x-1),得整式方程x+1=2

  解整式方程,得x=1.

  x=1时原方程的解是否正确?

  检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.

  ∴原方程无解.

  讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?

  分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.

  在解1中,方程两边都乘以x(x-6),接着求出x=18,而当x=18时,2(x+5)=216,所以相当于方程两边都乘以16(≠0),因此所得的整式方程与原方程同解.

  在解2中,方程两边都乘以(x+1)(x-1),接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.

  像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.

  注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.

  由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.

  例1、解方程

  对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)

  解:方程两边同乘x(x-2),约去分母,得

  5(x-2)=7x解这个整式方程,得

  x=5.

  检验:把x=-5代入最简公分母

  x(x-2)=35≠0,

  ∴x=-5是原方程的解.

  例2、解方程

  解:方程两边同乘最简公分母(x-2),约去分母,得

  1=x-1-3(x-2). ( -3这项不要忘乘)

  解这个整式方程,得

  x=2.

  检验:当x=2时,代入最简公分母(x-2)=0,

  ∴x=2是增根,

  ∴原方程无解.

  注意:要求学生一定要严格按解题格式步骤完成.

  (三)总结

  解分式方程的一般步骤:

  1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

  2.解这个整式方程.

  3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.

  (四)练习

  教材P.98中1由学生在黑板上写,教师订正.

  六、作业 

  教材P.101中1.

  七、板书设计 

4.2一元一次方程 篇7

  教材分析本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

  学情分析1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

  4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

  5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。教学目标(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。教学重点和难点

  1.教学重点:根据题意寻找和;差;倍;分问题的相等关系  2.教学难点:根据题意列出一元一次方程

  教学过程

  教学环节

  教师活动

  预设学生行为

  设计意图

  一、从学生原有的认知结构提出问题

  师生问好.

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  例1 某数的3倍减2等于某数与4的和,求某数.

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3.

  答:某数为3.

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4.

  解之,得x=3.

  答:某数为3.

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

  习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

  教师借助于旧知识的回顾,引出本节课的主题,既注意到新旧知识之间的联系,又激发了学生对问题探究的热情.

  二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42 500,

  所以 x=50 000.

  答:原来有 50 000千克面粉.

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿.

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

  例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程: 2x=10,

  所以 x=5.

  其苹果数为 3× 5+9=24.

  答:第一小组有5名同学,共摘苹果24个.

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

  (设第一小组共摘了x个苹果,则依题意,得)

  抓不准相等关系

  由一般到特殊,引出新课,内容更贴近实际生活了,使学生认识到学有所用,同时提高了解决实际问题的能力

  三、课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.

  3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.

  学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

  随着教师一个个准确、恰当的问题,引发了学生在不知不觉中步步推进、层层深入思考与探索.

  教学中注意鼓励的评价作用,让全体学生主动参与、积极思考,培养学生合作交流的学习习惯.

  四、师生共同小结

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆.

  五、作业

  1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台.这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

  学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

  板书设计

  一元一次方程解简单应用题的方法和步骤 教师和学生板演

4.2一元一次方程 篇8

  2.3从“买布问题”说起---一元一次方程的讨论(2)(四)【教学目标】1.熟练掌握一元一次方程的解法;2.进一步感受列方程的一般思路;3.进一步培养学生的建模能力及创新能力.4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.【对话探索设计】〖探索1〗一项工程,甲要做12天才能做完.如果把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为________.他做3天的工作量是__________.〖探索2〗一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?(1)你能估算出答案吗?(2)试一试,怎样用直线型示意图寻求答案:如图,线段ab表示总工作量1,怎样在线段ab上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量? 通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?〖探索3〗一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?解:把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为______;乙一天的工作量为______;设两人合做要x天,那么,甲的总工作量为________;乙的总工作量为________;这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:_____________________.解这个方程得________________.答:_____________________.把这道题的解法与小学时的算术解法进行比较,你有什么发现?〖探索4〗整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作? (p92例5)  解:把总工作量看作1,那么,根据工作效率=________÷________,得人均效率(一个人1小时的工作量)为________.设先安排x人工作4小时, 那么,这x个人4小时的工作量为_______________(可化简为_________).显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时的工作量为___________________(可化简为_________).这工作分两段完成,根据两段完成的工作量等于1可列方程:________________________.解得_______.答:_________________.想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.〖作业〗p93.习题3(3),(4);p94,8,9

4.2一元一次方程 篇9

  本节内容并不多,通过讨论一次函数与方程的关系,从运动变化的角度,用函数的观点加深对已经学习过的内容的认识,熟悉数形结合思想。教材还说“这种再认识不是简单的回顾复习,而是居高临下地进行动态分析。 

  学完课本内容后,让学生找开基训P23,做上面的1、2。第2题要求“求函数解析式且画出图象,根据图象回答……”。学生练习本上求解函数解析式,巡视中发现许多学生并没有作出一次函数的图象而直接把已知代入解析式求解,虽然也能答出结果但有悖题意。我赶快提示学生,根据要求答题。几分钟后,检查学生完成的情况,却发现部分学生所画的图象不规范,如没有标出与两坐标轴的交点。还有的学生虽然画出了图象却依然是“把X=2代入……”可见学生对于图象的运用仍然不熟练,本章还有许多利用图象解决实际问题的题,数形结合真是一个难点。临下课五分钟,我突然想到用几何画板讲解这道题目非常合适,因为画板能准确地做出此题的图象,一试效果不错。 

  阅完昨天的测试题,总体上学生有了一点进步。出现的问题是有几人得分出人意料:梁敏61;乔珊:24。乔是因为上课不认真听讲,而梁呢?不得其解。女生的数学成绩起伏很大,如戎华上次测试不及格,而这次却取得了88分。关注,持续关注,她们的成绩会有起色。  

4.2一元一次方程 篇10

  第二章  一元一次方程

  一、背景与意义分析本课安排在第1章“有理数”之后,属于《全日制义务教育数学课程标准(实验稿)中的“数与代数”领域。    方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。本课中引出了方程、一元一次方程等基本概念,并且对“根据实际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的“数学建模思想”是本课始终渗透的主要数学思想。在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。利用率100%。3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。4、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到“从算式到方程是数学的进步”的含义。5、观念确认与引导:通过经历“方程”这一数学概念的形成与应用过程,感受到“问题情境——分析讨论——建立模型——解释应用——转换拓展”的模式,从而更好地理解“方程”的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。三、障碍与生成关注通过“问题情境”,建立“数学模型”,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝“数学模型”方面理解。四、学程与导程活动(一)创设情景、引入新课同学们知道南通市的东城区吗?那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电厂已在东城区的新胜村拔地而起(图片展示),让我们乘36路公交车去感受一下吧!假设36路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示: 

  地名

  时间

  小石桥

  8:00

  国胜东村

  8:09

  观音山

  8:17

  新胜村在观音山、国胜东村之间,到观音山的路程有3千米,到国胜东村的路程有1千米,请问小石桥到新胜村的路程有多远?先让学生读题,然后教师指出:这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,标出两端地点。    小石桥                观音山  最后师生共同逐句分析,并提问:你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:1、看表格有:从小石桥到国胜东村有________分钟;从小石桥到观音山有_______分钟;从国胜东村到观音山有______分钟。2、你能画出汽车所经过四个地方的顺序图吗?不妨试一试;对照示意图,让学生指出有关路程的信息。教师最后整理成如下示意图:       小石桥          国胜东村   新胜村        观音山(二)动手实践、发现新知你会解决这个实际问题吗?不妨试一试。(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。)如果学生中有人利用方程做出,教师分析左右两边的意义;如果没有,则作如下提示:如果设小石桥到新胜村的路程为x千米,教师根据示意图,提出下列问题,让学生自主讨论口答:1、小石桥到国胜东村有_____千米,小石桥到观音山有_____千米。2、小石桥到国胜东村行车_____分钟,小石桥到观音山行车_____分钟。3、从小石桥到国胜东村的汽车速度为_____千米/分。让学生口答,请学生判断修正,并提出此题中有哪些相等关系?从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?由此启发得出方程:指出:以后我们将学习如何从此方程中解出未知数x,从而得出小石桥到新胜村的路程。(三)类比分析、总结提高  1、方法解题时,列出的算式中只能用已知数表示;而方程是根据问题的相等关系列出的等式,其中既含有已知数,又含有未知数,即方程是含有未知数的等式。同学们也看到列方程比较方便,而算式较繁。  2、列方程的步骤让学生根据例子,总结出列方程的三步骤:(1)设字母表示未知数;(2)找出问题中的相等关系;(3)写出含有未知数的等式——方程。3、对于上面问题,你还能列出其它方程吗?如能,你依据哪个相等关系?(学生讨论,代表发言)(四)例题分析、揭示课题同学们是否参加过学校的义务劳动呢?下面一起讨论义务为学校搬运砖块的问题。  例1、学校组织65名少先队员为学校建花坛搬砖,六(1)班同学每人搬6块,六(2)班同学每人搬8块,总共搬了400块,问六(1)班同学有多少人参加了搬砖?  1、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。先让学生试做,然后抓住时机,亮出如下表格,见机讲解。 

  六(1)班

  六(2)班

  总数

  参加人数

  每人搬砖数

  6

  8

  共搬砖数  

  400  2、 通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。由上面题目分析也得出:这些都是只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程(板书课题:一元一次方程)  3、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。  4、例2:根据下列问题,设未知数并列出方程:(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(2)一根长的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?让2位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。(五)总结巩固、初步应用1 师生共同小结归纳上面的分析过程可以表示如下:设未知数    找相等关系     列方程 实际问题     一元一次方程    分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。2、练习:(1)  环形跑道一周长,沿跑道跑多少周,可以跑?(2)  甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多,高,面积是,求上底。2、 作业:课本73页第1、5题。五、笔记与板书提纲课题  例1  例1示意图定义  例2列方程的分析过程归纳六、练习与拓展选题根据生活经历,自编一道列方程应用题。七、个别与重点辅导:学生姓名(略)八、反思与点评记录

4.2一元一次方程 篇11

  学习目标    1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析培养学生用代数方法解决实际问题的能力。熟练解一元一次方程    2.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。重点:工程中的工作量、工作的效率和工作时间的关系。难点:把全部工作量看作“1”。学习过程 一、复习提问1、解一元一次方程的步骤:      

  步骤

  方法

  注         意   依  据

  去分母在方程两边都乘以________________不要漏乘不含分母的项,分子是一个整体,去分母后应加括号

  去括号先去_______,再去______,最后______。带着符号计算,不要漏乘

  移  项

  把___________项都已到方程的一边,其它项移到另一边。移项要_________

  合  并把方程两边分别合并,化成ax=b的形式。合并只是系数相加,字母及指数不变

  系数化为1在方程两边都除以未知数的系数_______,得到方程的解x=b/a分子、分母不要_______2、解方程  1)                2) 3.一件工作,如果甲单独做2小时完成,那么甲独做1小时完成全     部工作量的       ?4.一件工作,如果甲单独做a小时完成,那么甲独做x小时,完成     全部工作量的       ?    5.工作量、工作效率、工作时间之间有怎样的关系?二、学生自学p101 例5 分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了么?提出什么问题?    注意:工作总量看成         2.还可以怎样用列方程解决这个问题?本题中的等量关系是什么?                                                            3、工作效率为      ,从始至终一部分(即x)人共做       小时,工作量为      两人共做     小时 ,工作量为      方程为                           4、写出完整解题过程:     三、巩固练习1.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是       ,乙每天的工作效率是        ,两人合作3天完成的工作量是          ,此时剩余的工作量是               。2、一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是       ,乙每天的工作效率是        ,两人合作3天完成的工作量是          ,此时剩余的工作量是                   。3、整理一批数据,由一个人做需80小时完成。现在计划由一些人做2小时,再增加5人做8小时,完成这项工作的3/4 。怎样安排参与整理数据的具体人数?4、一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现   由甲独做10小时   (1)剩下的乙独做要几小时完成?      (2)剩下的由甲、乙合作,还需多少小时完成?      (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成? 四、小结     1.本节课主要分析了工作问题中工作量、工作效率和工作时间之  间的关系,即  工作量=工作效率×工作时间工作效率=    工作时间=合效率:各效率之和;   总工作量可看做“1”2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。      3、掌握解一元一次方程的一般步骤,注意易错点五、作业p102:   8题 ,  9 题;  p113:  2题六、课堂检测

  1)一件工作,甲单独做20小时完成,乙单独做12小时完成。

  若乙先做2小时,然后由甲、乙合做,问还需几小时完成?

  2)一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成3)某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独完成,需要5小时完成。如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?七、课下练习:解方程1) ;    (2) ;(3)0.3x+1.2-2x=1.2-2.7x.       (4)2(x-2)-(4x-1)=3(1-x)(5) ;                 (6) ;(7)                   (8) (9)                    (10)

4.2一元一次方程 篇12

  一、目的要求     使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程               7x-2=6x-4

  时,用移项可直接得到  7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x;       (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程 

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到                     x=5+7,

  x=12。

  又如方程                           7x=6x-4

  的两边都减去6x,就可以得到      7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

  利用移项解前面提到的方程   3x-2=2x+l

  解:移项,得              3x-2x=1+2。①

  合并,得                      x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

  所以x=3是原方程的解。

  在上面解的过程中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页  练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业 

  习题2.1  P73 复习巩固

4.2一元一次方程 篇13

  一、素质教育目标

  (一)知识教学点

  1.要求学生学会用移项解方程的方法.

  2.使学生掌握移项变号的基本原则.

  (二)能力训练点

  由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

  (三)德育渗透点

  用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

  (四)美育渗透点

  用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

  二、学法引导

  1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

  2.学生学法:练习→移项法制→练习

  三、重点、难点、疑点及解决办法

  1.重点:移项法则的掌握.

  2.难点:移项法解一元一次方程的步骤.

  3.疑点:移项变号的掌握.

  四、课时安排

  3课时

  五、教具学具准备

  投影仪或电脑、自制胶片、复合胶片.

  六、师生互动活动设计

  教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤 

  (一)创设情境,复习导入  

  师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

  (出示投影1)

  利用等式的性质解方程

  (1) ; (2) ;

  解:方程的两边都加7, 解:方程的两边都减去 ,

  得 , 得  ,

  即 . 合并同类项得  .

  【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

  提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

  (二)探索新知,讲授新课

  投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

  (出示投影2)

  师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

  2.改变的项有什么变化?

  学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

  师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

  【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

  师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

  (三)尝试反馈,巩固练习

  师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

  学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

  【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

  对比练习:(出示投影3)

  解方程:(1) ; (2) ;

  (3) ; (4) .

  学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

  师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

  【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

  巩固练习:(出示投影4)

  通过移项解下列方程,并写出检验.

  (1) ; (2) ;

  (3) ; (4) .

  【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

  (四)变式训练,培养能力

  (出示投影5)

  口答:

  1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

  (1)从 ,得到 ;

  (2)从 ,得到 ;

  (3)从 ,得到 ;

  2.小明在解方程 时,是这样写的解题过程: ;

  (1)小明这样写对不对?为什么?

  (2)应该怎样写?

  【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.

  (出示投影6)

  用移项解方程:

  (1) ; (2) ;

  (3) ; (4) .

  【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.

  学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.

  (出示投影7)

  解下列方程:

  (1) ; (2) ; (3) ;

  (4) ; (5) ; (6) .

  【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.

  (五)归纳小结

  师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.

  八、随堂练习

  1.判断下列移项是否正确

  (1)从 得 ( )

  (2)从 得 ( )

  (3)从 得 ( )

  (4)从 得 ( )

  2.选择题

  (1)对于方程 ,移项正确的是( )

  A. B.

  C. D.

  (2)对于方程 移项正确的是( )

  A. B.

  C. D.

  3.用移项法解方程,并写出检验

  (1) ;

  (2) ;

  (3) .

  九、布置作业 

  课本第205页A组1.(1)(3)(5).

  十、板书设计 

  随堂练习答案

  1.× × × √

  2.D  C

  3.略

  作业 答案

  (5)

  解:移项得

  合并同类项得

  检验:略

  探究活动

  运动与学习成绩

  班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?

  参考答案:

  全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.

  参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.

4.2一元一次方程 篇14

  2.4再探实际问题与一元一次方程(2)

  【教学目标】1.学习利用表格的数据探索规律;2.认识代数解法(列方程解应用题)的局限性;3.让学生进一步感受数学的应用价值;4.感受与同伴交流的乐趣.【对话探索设计】〖探索1〗下表记录了一根金属丝在不同温度下的长度.根据数据猜测:温度/℃-10010203040长度/mm252.28252.60252.92253.24253.56253.88 (1)温度每升高1℃,这根金属丝的长度伸长了多少?.(2)当温度是80℃时, 这根金属丝的长度是多少?(3)若长度是256.76mm,温度是多少?(4)把温度记为t(℃),长度记为y(cm),求用t表示y的式子.〖探索2〗下表记录了一次实验中时间和温度的数据: 时间/分0510152025温度/℃102540557085 (1)如果温度的变化是均匀的,21分的温度是多少?(2)什么时间的温度是34℃?〖探索3〗p96探究3观察p96积分榜,回答下面的问题:(1)从最后一行数据可以发现:负一场积1分.从其它行的数据是否也能直接得出这个结论?(2)从第3行是否也能求出胜1场积2分?(3)把总积分记为s,胜场数记为n,怎样用含n的代数式表示s?(4)为什么说胜场的总积分不可能等于负场的总积分?

  地名时间

  王家庄10:00

  青山13:00

  秀水15:00〖探索4〗汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米.王家庄到翠湖的路程有多远?(1)从表中你得到哪些信息? 从图中你得到哪些信息?(2)从已知的信息,你认为题中哪些有关的元素是可求的?

  提示:做学问要有主见,不要人云亦云.不唯书,不唯上. (3)你认为有必要列方程解吗?  〖探索5〗已知5台a型机器一天的产品装满8箱后还剩4个,7台b型机器一天的产品装满11箱后还剩1个,每台a型机器比b型机器一天多生产1个产品,求每箱有多少个产品.解法一:设每箱有x个产品,则5台a型机器一天生产__________个; 7台b型机器一天生产____________个.所以,每台a型机器一天生产__________个;每台b型机器一天生产____________个.根据每台a型机器比b型机器一天多生产1个产品,列方程: ________________________.解得x=_________.解法二:设每台b型机器一天生产x个产品,根据每台a型机器比b型机器一天多生产1个产品,得每台a型机器一天生产____________个产品.所以,7台b型机器一天生产_______个产品,因为这些产品装满11箱后还剩1个,得每个箱子装___________个产品;同样道理, 5台a型机器一天生产_______个产品,因为这些产品装满8箱后还剩4个,得每个箱子装___________个产品;现在该怎样列方程:根据什么?最后请写出答案. 【备用素材】1.某园林的门票每张10元,一次使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种"购买个人年票"的方法.个人年票从购票日起,可供持票者使用一年.年票每张60元,入园时需买一张2元的门票.(1)如果你计划在一年中用80元花在该园林的门票上,应选择哪一种购票方式?(2)在什么情况下购买年票与不购买年票花费相等?(3)你认为在什么情况下购买年票比较合算?2.小王从家门口的公交车站去火车站.如果坐公交车,他将会在火车开车后半小时到达车站,如果坐出租车,可以在火车开车前15分到达火车站.已知公交车的速度是45km/h,出租车的速度是公交车的2倍,问小王的家到火车站有多远?解法一:设出租车到火车站要x小时,根据出租车的速度是公交车的2倍,得公交车到火车站要____小时,根据出租车到火车站所用的时间比公交车要少________小时,列方程:___________________.解得__________.把求得的时间乘速度得小王的家到火车站的路程是________.答略.解法二:设小王的家到火车站的路程是xkm,那么,根据时间等于路程÷速度,得他坐公交车到火车站要_______小时;坐出租车到火车站要_____小时.根据出租车到火车站所用的时间比公交车要少________小时,列方程:_______________________.(以下略)解法三:设小王出发时距离火车开车还有x分,坐出租车到火车站所用的时间为________;坐出租车的路程为_____________.坐公交车到火车站所用的时间为________;坐公交车的路程为_____________.列方程__________________________.(以下略) 9.弹簧的长度y(cm)与所挂的重物的质量x(千克)之间的关系如右图,根据图形,(1)求不挂重物时,弹簧的长度;(2)求当所挂重物的质量为5千克时,弹簧的长度;(3)若弹簧的长度为16cm,求所挂重物的质量.〖补充作业〗2.长途汽车客运公司规旅客可随身携带一定重量的行李,行李若超过规定,则需购买行李票.设行李重量是x(千克),行李费用是y元,根据下列表格所提供的信息,猜测y与x之间的关系式,并把表格填全,

  x

  25

  40

  50

  60

  ......

  n

  y

  0

  3

  6

  15

  ......

4.2一元一次方程 篇15

  教学目标 

  1.使学生正确认识含有字母系数的一元一次方程.

  2.使学生掌握含有字母系数的一元一次方程的解法.

  3.使学生会进行简单的公式变形.

  4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.

  教学重点

  (1)含有字母系数的一元一次方程的解法.

  (2)公式变形.

  教学难点 

  (1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.

  (2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.

  教学方法

  启发式教学和讨论式教学相结合

  教学手段

  多媒体

  教学过程 

  (一)复习提问

  提出问题:

  1.什么是一元一次方程?

  在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.

  2.解一元一次方程的步骤是什么?

  答:(1)去分母、去括号.

  (2)移项——未知项移到等号一边常数项移到等号另一边.

  注意:移项要变号.

  (3)合并同类项——提未知数.

  (4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.

  (二)引入新课

  提出问题:一个数的a倍(a≠0)等于b,求这个数.

  引导学生列出方程:ax=b(a≠0).

  让学生讨论:

  (1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)

  (2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)

  强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.

  (三)新课

  1.含有字母系数的一元一次方程的定义

  ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.

  2.含有字母系数的一元一次方程的解法

  教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:

  ax=b(a≠0).

  由学生讨论这个解法的思路对不对,解的过程对不对?

  在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.

  含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)

  特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.

  3.讲解例题

  例1  解方程ax+b2=bx+a2(a≠b).

  解:移项,得  ax-bx=a2-b2,

  合并同类项,得(a-b)x=a2-b2.

  ∵a≠b,∴a-b≠0.

  x=a+b.

  注意:

  1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.

  2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).

  3.方

  例2、解方程

  分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.

  解:b(x-b)=2ab-a(x-a)(a+b≠0).

  bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母.)

  ba+ax=a2+2ab+b2

  (a+b)x=(a+b)2.

  ∵a+b≠0,

  ∴x=a+b.

  (四)课堂练习

  解下列方程:

  教材P.90.练习题1—4.

  补充练习:

  5.a2(x+b)=b2(x+a)(a2≠b2).

  解:a2x+a2b=b2x+ab2

  (a2-b2)x=ab(b-a).

  ∵a2≠b2,∴a2-b2≠0

  解:2x(a-3)-(a+2)(a-3)=x(a+2)

  (a-b)x=(a+2)(a-3).

  ∵a≠8,∴a-8≠0

  (五)小结

  1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系.

  2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同.但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零.

  六、布置作业 

  教材P.93.A组1—6;B组1、

  注意:A组第6题要给些提示.

  七、板书设计 

  探究活动

  a=bc  型数量关系

  问题引入:

  问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)

  提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。

  1、由学生讨论,得出结论。

  2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总

  长度为b,单位长度的质量为c,a,b,c之间有什么关系?

  由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量 ,再称

  出其余电线的总质量 ,则 (米)是其余电线的长度,所以这捆电线的总长度为( )米。

  引出可题:探究活动:a=bc型数量关系。

  1、b、c之一为定值时.

  读课本P.96—P.97并填表1和表2中发现a=bc型数量关系有什么规律和特点?

  (1)分析表1

  表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比

  较:宽c=1,长由2变为4。

  面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。

  得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。

  (2)分析表2

  (1)表2从理论上证明了对表1的分析的结果。

  (2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)

  (3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是

  我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。

  2、为定值时

  读书P.98—P.99,填P.99空,自己试着分析数据,看到出什么结论?

  分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。

  可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。

  这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。

  3、实际问题中,常见的a=bc型数量关系。

  (1)总价=单价×货物数量;

  (2)利息=利率×本金;

  (3)路程=速度×时间;

  (4)工作量=效率×时间;

  (5)质量=密度×体积。

  … 例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。

  策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。

  解:y=2n

  总结:本题考查a=bc型关系式,解题关键是弄清数量关系。

  例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。

  解:s=30t

  例3、一种储蓄的年利率为2.25%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。

  解:y=2.25%x

  程的解是分式形式时,一般要化成最简分式或整式.

4.2一元一次方程 篇16

  教    学    任    务

  教学目标

  知识技能

  通过探索球赛积分与胜负场数之间的数量关系,进一步体会一元一次方程是解决实际问题的数学模型。

  数学思考

  1、会从实际问题中抽象出数学问题,并会建立一元一次方程模型解决问题;

  2、认识到由实际问题得到的方程的解要符合实际意义。

  解决问题

  对于实际问题能够进行观察思考,并转化为数学问题,然后找到解决问题的关键——利用方程模型列出方程,进而解决问题。

  情感态度

  增强学生运用数学知识解决实际问题的意识,激发学生学习数学的热情。

  重点

  把实际问题转化为数学问题,会用列方程求出问题的解,并会进行推理判断。

  难点

  在实际问题中找到一元一次方程模型

  教    学    流    程

  活  动  流   程   图

  活    动  内  容  和  目的

  活动1  观看球赛片段。

  活动2 认识球赛积分表提出问题。

  活动3 对问题进行分解。

  活动4 解决问题。

  活动5 问题深入化。

  创设情境,激发学生学习欲望,引入新课。

  展示积分表,学生观察,培养学生的观察思考能力。

  引导、分析,为解决问题建立数学模型。

  利用数学模型解决实际问题,实现“问题——数学——问题”。

  进一步培养学生利用数学模型解决实际问题的能力。

  教    学    过    程

  问题与情境

  师生行为

  设计意图

  [活动1]

  展示篮球赛片段,引出积分表问题

  教师:操作课件,播放篮球赛片段。

  学生:欣赏球赛。

  创设情境,激发学生的学习欲望。

  [活动2]

  展示课本96页中赛季全国男篮甲a联赛常规赛最终积分榜。提出问题:

  (1)列式表示积分与胜场数之间的数量关系;

  (2)某队的胜场总积分能等于它的负场总积分吗?

  教师:说明积分规则

  学生:观察表格

  教师在学生自由观察表格并发表意见的基础上引导学生观察表格中横、纵所隐藏着的信息,并建立数学模型。

  教师重点关注:

  (1)胜场积分+负场积分=总积分

  (2)解决问题的关键:胜一场积几分,负一场积几分。

  在观察表格中培养学生的观察能力,引导学生用数学的方法去观察、思考问题,实现“问题——数学”,激发学生的求知欲。

  让学生明确总积分是如何得出的,建立数学模型,并找到解决问题的关键。

  [活动3]探究:

  胜一场积几分,负一场积几分。

  学生继续观察表格,教师提问题:

  你选择表格中哪一行能说明负一场积几分呢?

  学生探究交流得:

  从最后一行数据可以发现:负一场积1分。

  教师继续提问:

  胜一场积几分呢?

  学生探究交流。

  学生可能会用算术法得出胜一场积2分,这时教师应关注:

  1、引导学生通过列一元一次方程,用解方程的方法得到,为最后问题的拓展奠定基础。

  2、负一场积1分,胜一场积2分。                                   

  培养学生观察能力的同时,帮助学生建立数学模型,让学生明白列一元一次方程是解决实际问题的一种方法。

  问题与情境

  师生行为

  设计意图

  [活动4]解决问题

  (1)列式表示积分与胜场数之间的数量关系.

  (2)某队的胜场总积分等于它的负场总积分吗?

  教师:以上的分析得出的结论是:

  胜一场积2分,负一场积1分。

  学生分组讨论交流解决问题(1)

  教师应关注:

  (1)负场数=比赛场数-胜场数

  (2)总积分=胜场积分+负场积分

  (3)问题变式:列式表示积分与负场数之间的数量关系

  学生分组讨论交流解决问题(2)

  解:设一个队胜了x场,则负了(22-x)场,如果这个队的胜场总积分等负场总积分则利用问题(1)的结论,可得:                                 

  2x=22-x,解得x=22/3                                

  教师应关注:

  (1)列一元一次方程解决

  (2)方程的解与实际问题的关系

  在学生与他人交流的过程中获得解决问题的方法,同时也展示自己的解答,既训练了学生的表达能力,也增强了合作交流地信心,营造了良好的学习氛围,使所有学生都能在数学学习中树立自信心,养成思考习惯,增强交流的勇气。

  [活动5]

  1、探究

  如果删去积分榜的最后一行,你还能解决这两个问题吗?

  2、小结、作业p100t8、9

  教师提出问题

  教师应关注:

  解决问题的关键还是要求出胜一场积几分,负一场积几分,并引导学生思考:删去了最后一行,不能直接得到负一场积1分,又如何来求胜一场积几分,负一场得几分呢?

  教师提示:

  可利用各队胜一场积分相等或利用各队负一场积分相等,任选两个胜、负场数不相同的队即可列方程解决。

  学生课后思考完成。 

  教师:通过这节课的学习,你有哪些收获?

  学生举手发表自己的想法

  教师应关注:

  对实际问题思考抽象出数学问题,并对数学问题的解决找到其关键,然后,通后列一元一次方程解决

  通过探究使学生明白在解决问题的过程中体会到解决问题是可以有不同策略的,每一个人都应有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。

  通过学生回顾感悟,进一步理解一元一次方程与实际问题的联系,形成一种解决问题的思考方法。

  设计说明:通过引导学生观察积分表,从中读取信息,让学生体会到数学源于生活并应用于生活,实现“问题——数学——问题”的数学模型,让学生感受到数不就在我们身边,明白方程是解决实际问题的一般模型。

  注:教学设计是云梦县道桥中学夏辉老师在“湖北省XX年初中数学使用新教材暨全国全省一等奖教师优质课展示活动”中的展示课中的教学设计,课堂教学效果较好。

4.2一元一次方程 篇17

  4.2  解一元一次方程的算法(三)教学目标1.在具体情景中建立方程模型.2.能准确应用去括号法则解一元一次方程。教学重、难点重点:利用去括号的法则解含括号的一元一次方程。难点:解含多重括号的一元一次方程教学过程一 激情引趣,导入新课1 下面去括号是否正确?(1)2-(3x-5)=2-3x-5,(2) 5x- 3(2x-4)=5x-6x-122下图中马路的旁边栽了几颗树?间隔几段?段数和棵数有什么规律?  下面我们就来看一道与植树有关的问题二 合作交流,探究新知1 问题1现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔5.5米栽一棵,则树苗正好用完.你能算出原有树苗的棵数和这段路的长度吗?(做完后交流做法)2 尝试练习:(1 )解方程: (2) 下面方程的解法对不对?如果不对,请改正。解方程: 解:去括号,得  移项,得 化简,得 方程两边除以 ,得:x= - (3) 解下了方程,并口算检验:    ①(4y+8)+(3y-7)=0 ,                         ② 2(2x-1)-2(4x+3)=7③ 三 应用迁移,巩固提高1 解含有多重括号的方程例1 解方程: 2 实践应用例2 如果代数式8x-9与6-2x的值互为相反数,则x的值为___________例3 如果用c表示摄氏温度(℃),f表示华氏温度(℉),那么c和f之间的关系是“c= (f-32)”已知c=15,求f.四 冲刺奥赛例4 已知关于x的方程3[x-2 (x- )]=4x,和 有相同的解,求这个解。五 反思小结,拓展提高遇到有括号的方程应该怎样处理呢?六作业 p 118 a 组 5、6、7 b 组 2